Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34817378

RESUMEN

Proper integration of different inputs targeting the dendritic tree of CA3 pyramidal cells (CA3PCs) is critical for associative learning and recall. Dendritic Ca2+ spikes have been proposed to perform associative computations in other PC types by detecting conjunctive activation of different afferent input pathways, initiating afterdepolarization (ADP), and triggering burst firing. Implementation of such operations fundamentally depends on the actual biophysical properties of dendritic Ca2+ spikes; yet little is known about these properties in dendrites of CA3PCs. Using dendritic patch-clamp recordings and two-photon Ca2+ imaging in acute slices from male rats, we report that, unlike CA1PCs, distal apical trunk dendrites of CA3PCs exhibit distinct forms of dendritic Ca2+ spikes. Besides ADP-type global Ca2+ spikes, a majority of dendrites expresses a novel, fast Ca2+ spike type that is initiated locally without bAPs, can recruit additional Na+ currents, and is compartmentalized to the activated dendritic subtree. Occurrence of the different Ca2+ spike types correlates with dendritic structure, indicating morpho-functional heterogeneity among CA3PCs. Importantly, ADPs and dendritically initiated spikes produce opposing somatic output: bursts versus strictly single-action potentials, respectively. The uncovered variability of dendritic Ca2+ spikes may underlie heterogeneous input-output transformation and bursting properties of CA3PCs, and might specifically contribute to key associative and non-associative computations performed by the CA3 network.


Asunto(s)
Potenciales de Acción , Dendritas/fisiología , Células Piramidales/fisiología , Animales , Masculino , Ratas
2.
Nat Commun ; 11(1): 1413, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179739

RESUMEN

Clustering of functionally similar synapses in dendrites is thought to affect neuronal input-output transformation by triggering local nonlinearities. However, neither the in vivo impact of synaptic clusters on somatic membrane potential (sVm), nor the rules of cluster formation are elucidated. We develop a computational approach to measure the effect of functional synaptic clusters on sVm response of biophysical model CA1 and L2/3 pyramidal neurons to in vivo-like inputs. We demonstrate that small synaptic clusters appearing with random connectivity do not influence sVm. With structured connectivity,  ~10-20 synapses/cluster are optimal for clustering-based tuning via state-dependent mechanisms, but larger selectivity is achieved by 2-fold potentiation of the same synapses. We further show that without nonlinear amplification of the effect of random clusters, action potential-based, global plasticity rules cannot generate functional clustering. Our results suggest that clusters likely form via local synaptic interactions, and have to be moderately large to impact sVm responses.


Asunto(s)
Neuronas/fisiología , Sinapsis/fisiología , Potenciales de Acción , Animales , Potenciales de la Membrana , Ratones , Modelos Neurológicos , Plasticidad Neuronal , Neuronas/química , Células Piramidales/fisiología , Sinapsis/química
3.
J Neurosci ; 40(13): 2593-2605, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047054

RESUMEN

Coordinated long-term plasticity of nearby excitatory synaptic inputs has been proposed to shape experience-related neuronal information processing. To elucidate the induction rules leading to spatially structured forms of synaptic potentiation in dendrites, we explored plasticity of glutamate uncaging-evoked excitatory input patterns with various spatial distributions in perisomatic dendrites of CA1 pyramidal neurons in slices from adult male rats. We show that (1) the cooperativity rules governing the induction of synaptic LTP depend on dendritic location; (2) LTP of input patterns that are subthreshold or suprathreshold to evoke local dendritic spikes (d-spikes) requires different spatial organization; and (3) input patterns evoking d-spikes can strengthen nearby, nonsynchronous synapses by local heterosynaptic plasticity crosstalk mediated by NMDAR-dependent MEK/ERK signaling. These results suggest that multiple mechanisms can trigger spatially organized synaptic plasticity on various spatial and temporal scales, enriching the ability of neurons to use synaptic clustering for information processing.SIGNIFICANCE STATEMENT A fundamental question in neuroscience is how neuronal feature selectivity is established via the combination of dendritic processing of synaptic input patterns with long-term synaptic plasticity. As these processes have been mostly studied separately, the relationship between the rules of integration and rules of plasticity remained elusive. Here we explore how the fine-grained spatial pattern and the form of voltage integration determine plasticity of different excitatory synaptic input patterns in perisomatic dendrites of CA1 pyramidal cells. We demonstrate that the plasticity rules depend highly on three factors: (1) the location of the input within the dendritic branch (proximal vs distal), (2) the strength of the input pattern (subthreshold or suprathreshold for dendritic spikes), and (3) the stimulation of neighboring synapses.


Asunto(s)
Potenciales de Acción/fisiología , Región CA1 Hipocampal/fisiología , Dendritas/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Animales , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Sinapsis/fisiología
4.
Nat Commun ; 10(1): 1859, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015414

RESUMEN

Complex spike bursts (CSBs) represent a characteristic firing pattern of hippocampal pyramidal cells (PCs). In CA1PCs, CSBs are driven by regenerative dendritic plateau potentials, produced by correlated entorhinal cortical and CA3 inputs that simultaneously depolarize distal and proximal dendritic domains. However, in CA3PCs neither the generation mechanisms nor the computational role of CSBs are well elucidated. We show that CSBs are induced by dendritic Ca2+ spikes in CA3PCs. Surprisingly, the ability of CA3PCs to produce CSBs is heterogeneous, with non-uniform synaptic input-output transformation rules triggering CSBs. The heterogeneity is partly related to the topographic position of CA3PCs; we identify two ion channel types, HCN and Kv2 channels, whose proximodistal activity gradients contribute to subregion-specific modulation of CSB propensity. Our results suggest that heterogeneous dendritic integrative properties, along with previously reported synaptic connectivity gradients, define functional subpopulations of CA3PCs that may support CA3 network computations underlying associative memory processes.


Asunto(s)
Potenciales de Acción/fisiología , Región CA3 Hipocampal/fisiología , Memoria/fisiología , Células Piramidales/fisiología , Animales , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Dendritas/fisiología , Masculino , Modelos Animales , Técnicas de Placa-Clamp , Ratas Wistar
5.
Neuron ; 100(3): 579-592.e5, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30408443

RESUMEN

Dendrites integrate inputs nonlinearly, but it is unclear how these nonlinearities contribute to the overall input-output transformation of single neurons. We developed statistically principled methods using a hierarchical cascade of linear-nonlinear subunits (hLN) to model the dynamically evolving somatic response of neurons receiving complex, in vivo-like spatiotemporal synaptic input patterns. We used the hLN to predict the somatic membrane potential of an in vivo-validated detailed biophysical model of a L2/3 pyramidal cell. Linear input integration with a single global dendritic nonlinearity achieved above 90% prediction accuracy. A novel hLN motif, input multiplexing into parallel processing channels, could improve predictions as much as conventionally used additional layers of local nonlinearities. We obtained similar results in two other cell types. This approach provides a data-driven characterization of a key component of cortical circuit computations: the input-output transformation of neurons during in vivo-like conditions.


Asunto(s)
Dendritas/fisiología , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Red Nerviosa/citología , Red Nerviosa/fisiología , Animales , Humanos , Modelos Lineales
6.
Nat Commun ; 7: 11380, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27098773

RESUMEN

Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca(2+) signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca(2+) signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na(+) spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns.


Asunto(s)
Espinas Dendríticas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio , Espinas Dendríticas/ultraestructura , Ácido Glutámico/metabolismo , Hipocampo/citología , Masculino , Microtomía , Técnicas de Placa-Clamp , Células Piramidales/ultraestructura , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Sodio/metabolismo , Sinapsis/ultraestructura , Técnicas de Cultivo de Tejidos
7.
Elife ; 42015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26705334

RESUMEN

Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.


Asunto(s)
Potenciales de Acción , Dendritas/fisiología , Células Piramidales/fisiología , Corteza Sensoriomotora/citología , Animales , Ácido Glutámico/metabolismo , Modelos Neurológicos , Ratas Sprague-Dawley , Corteza Sensoriomotora/fisiología
8.
Nat Methods ; 11(12): 1237-1241, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25326662

RESUMEN

Targeting visually identified neurons for electrophysiological recording is a fundamental neuroscience technique; however, its potential is hampered by poor visualization of pipette tips in deep brain tissue. We describe quantum dot-coated glass pipettes that provide strong two-photon contrast at deeper penetration depths than those achievable with current methods. We demonstrated the pipettes' utility in targeted patch-clamp recording experiments and single-cell electroporation of identified rat and mouse neurons in vitro and in vivo.


Asunto(s)
Encéfalo/fisiología , Electrofisiología/métodos , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Neuronas/fisiología , Óptica y Fotónica/instrumentación , Técnicas de Placa-Clamp/métodos , Puntos Cuánticos , Animales , Encéfalo/citología , Electrofisiología/instrumentación , Colorantes Fluorescentes , Ratones , Microscopía Fluorescente/instrumentación , Neuronas/citología , Óptica y Fotónica/métodos , Técnicas de Placa-Clamp/instrumentación , Ratas
9.
Neuron ; 80(6): 1438-50, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24360546

RESUMEN

The hippocampal CA3 region is essential for pattern completion and generation of sharp-wave ripples. During these operations, coordinated activation of ensembles of CA3 pyramidal neurons produces spatiotemporally structured input patterns arriving onto dendrites of recurrently connected CA3 neurons. To understand how such input patterns are translated into specific output patterns, we characterized dendritic integration in CA3 pyramidal cells using two-photon imaging and glutamate uncaging. We found that thin dendrites of CA3 pyramidal neurons integrate synchronous synaptic input in a highly supralinear fashion. The amplification was primarily mediated by NMDA receptor activation and was present over a relatively broad range of spatiotemporal input patterns. The decay of voltage responses, temporal summation, and action potential output was regulated in a compartmentalized fashion mainly by a G-protein-activated inwardly rectifying K(+) current. Our results suggest that plastic dendritic integrative mechanisms may support ensemble behavior in pyramidal neurons of the hippocampal circuitry.


Asunto(s)
Región CA3 Hipocampal/fisiología , Dendritas/fisiología , N-Metilaspartato/fisiología , Células Piramidales/fisiología , Potenciales de Acción/fisiología , Animales , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Ácido Glutámico/farmacología , Masculino , Canales de Potasio , Ratas , Sodio/fisiología
10.
Nature ; 491(7425): 599-602, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23103868

RESUMEN

Dendritic spines are the nearly ubiquitous site of excitatory synaptic input onto neurons and as such are critically positioned to influence diverse aspects of neuronal signalling. Decades of theoretical studies have proposed that spines may function as highly effective and modifiable chemical and electrical compartments that regulate synaptic efficacy, integration and plasticity. Experimental studies have confirmed activity-dependent structural dynamics and biochemical compartmentalization by spines. However, there is a longstanding debate over the influence of spines on the electrical aspects of synaptic transmission and dendritic operation. Here we measure the amplitude ratio of spine head to parent dendrite voltage across a range of dendritic compartments and calculate the associated spine neck resistance (R(neck)) for spines at apical trunk dendrites in rat hippocampal CA1 pyramidal neurons. We find that R(neck) is large enough (~500 MΩ) to amplify substantially the spine head depolarization associated with a unitary synaptic input by ~1.5- to ~45-fold, depending on parent dendritic impedance. A morphologically realistic compartmental model capable of reproducing the observed spatial profile of the amplitude ratio indicates that spines provide a consistently high-impedance input structure throughout the dendritic arborization. Finally, we demonstrate that the amplification produced by spines encourages electrical interaction among coactive inputs through an R(neck)-dependent increase in spine head voltage-gated conductance activation. We conclude that the electrical properties of spines promote nonlinear dendritic processing and associated forms of plasticity and storage, thus fundamentally enhancing the computational capabilities of neurons.


Asunto(s)
Espinas Dendríticas/fisiología , Células Piramidales/fisiología , Sinapsis/metabolismo , Animales , Impedancia Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Modelos Neurológicos , Ratas , Ratas Sprague-Dawley , Ratas Wistar
11.
Chembiochem ; 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21225599

RESUMEN

Three new caged neurotransmitters were synthesized built around the 2-(ortho-nitrophenyl)propyl (NPP) caging chromophore. The NPP-caged L-glutamate (Glu) and γ-aminobutyric acid (GABA) derivatives, which have an extended π-electron system bearing two carboxylates or phosphates were highly soluble (>50 mM) and hydrolytically stable at physiological pH. Uncaging GABA with ultraviolet light blocked network oscillations in layer 1 of the neocortex of a living mouse. Two-photon photolysis of caged Glu at single spine heads evoked changes in membrane voltage that were identical to synaptic stimulations. The implications of solubility complexities for the further development of the NPP scaffold for neurotransmitter uncaging are discussed in the context of other recent developments in this area.

12.
Nat Neurosci ; 12(12): 1485-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19898470

RESUMEN

The excitability of individual dendritic branches is a plastic property of neurons. We found that experience in an enriched environment increased propagation of dendritic Na(+) spikes in a subset of individual dendritic branches in rat hippocampal CA1 pyramidal neurons and that this effect was mainly mediated by localized downregulation of A-type K(+) channel function. Thus, dendritic plasticity might be used to store recent experience in individual branches of the dendritic arbor.


Asunto(s)
Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Dendritas/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Potenciales de Acción/fisiología , Animales , Regulación hacia Abajo/fisiología , Ambiente , Memoria/fisiología , Canales de Potasio/fisiología , Células Piramidales/ultraestructura , Ratas
13.
Nature ; 452(7186): 436-41, 2008 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-18368112

RESUMEN

Although information storage in the central nervous system is thought to be primarily mediated by various forms of synaptic plasticity, other mechanisms, such as modifications in membrane excitability, are available. Local dendritic spikes are nonlinear voltage events that are initiated within dendritic branches by spatially clustered and temporally synchronous synaptic input. That local spikes selectively respond only to appropriately correlated input allows them to function as input feature detectors and potentially as powerful information storage mechanisms. However, it is currently unknown whether any effective form of local dendritic spike plasticity exists. Here we show that the coupling between local dendritic spikes and the soma of rat hippocampal CA1 pyramidal neurons can be modified in a branch-specific manner through an N-methyl-d-aspartate receptor (NMDAR)-dependent regulation of dendritic Kv4.2 potassium channels. These data suggest that compartmentalized changes in branch excitability could store multiple complex features of synaptic input, such as their spatio-temporal correlation. We propose that this 'branch strength potentiation' represents a previously unknown form of information storage that is distinct from that produced by changes in synaptic efficacy both at the mechanistic level and in the type of information stored.


Asunto(s)
Dendritas/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/citología , Células Piramidales/metabolismo , Potenciales de Acción/fisiología , Animales , Forma de la Célula , Activación del Canal Iónico , Masculino , Ratones , Modelos Neurológicos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Canales de Potasio Shal/deficiencia , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo
14.
J Neurosci ; 27(38): 10211-22, 2007 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-17881527

RESUMEN

Several types of neurons are able to regulate their synaptic inputs via releasing retrograde signal molecules, such as endocannabinoids or nitric oxide (NO). Here we show that, during activation of cholinergic receptors, retrograde signaling by NO controls CB1 cannabinoid receptor (CB1R)-dependent depolarization-induced suppression of inhibition (DSI). Spontaneously occurring IPSCs were recorded in CA1 pyramidal neurons in the presence of carbachol, and DSI was induced by a 1-s-long depolarization step. We found that, in addition to the inhibition of CB1Rs, blocking the NO signaling pathway at various points also disrupted DSI. Inhibitors of NO synthase (NOS) or NO-sensitive guanylyl cyclase (NO-sGC) diminished DSI, whereas a cGMP analog or an NO donor inhibited IPSCs and partially occluded DSI in a CB1R-dependent manner. Furthermore, an NO scavenger applied extracellularly or postsynaptically also decreased DSI, whereas L-arginine, the precursor for NO, prolonged it. DSI of electrically evoked IPSCs was also blocked by an inhibitor of NOS in the presence, but not in the absence, of carbachol. In line with our electrophysiological data, double immunohistochemical staining revealed an NO-donor-induced cGMP accumulation in CB1R-positive axon terminals. Using electron microscopy, we demonstrated the postsynaptic localization of neuronal NOS at symmetrical synapses formed by CB1R-positive axon terminals on pyramidal cell bodies, whereas NO-sGC was found in the presynaptic terminals. These electrophysiological and anatomical results in the hippocampus suggest that NO is involved in depolarization-induced CB1R-mediated suppression of IPSCs as a retrograde signal molecule and that operation of this cascade is conditional on cholinergic receptor activation.


Asunto(s)
Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Inhibición Neural/fisiología , Óxido Nítrico/fisiología , Células Piramidales/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Femenino , Hipocampo/ultraestructura , Humanos , Masculino , Ratones , Ratones Noqueados , Células Piramidales/ultraestructura , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/ultraestructura , Receptores Colinérgicos/ultraestructura
15.
Nat Neurosci ; 8(9): 1139-41, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16116451

RESUMEN

The functions of 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid found in the brain, remain largely unknown. Here we show that two previously unknown inhibitors of monoacylglycerol lipase, a presynaptic enzyme that hydrolyzes 2-AG, increase 2-AG levels and enhance retrograde signaling from pyramidal neurons to GABAergic terminals in the hippocampus. These results establish a role for 2-AG in synaptic plasticity and point to monoacylglycerol lipase as a possible drug target.


Asunto(s)
Ácidos Araquidónicos/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Glicéridos/antagonistas & inhibidores , Hipocampo/citología , Células Piramidales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Compuestos de Anilina , Animales , Ácidos Araquidónicos/metabolismo , Benzoxazinas , Moduladores de Receptores de Cannabinoides , Relación Dosis-Respuesta a Droga , Endocannabinoides , Inhibidores Enzimáticos/química , Glicéridos/metabolismo , Células HeLa , Humanos , Hidrólisis/efectos de los fármacos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Monoacilglicerol Lipasas/metabolismo , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Células Piramidales/fisiología , Ratas
16.
Endocrinology ; 144(11): 4916-22, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12960104

RESUMEN

The involvement of cell volume in the K+-evoked Ca2+ signaling was studied in cultured rat glomerulosa cells. Previously we reported that hyposmosis (250 mOsm) increased the amplitude of T-type Ca2+ current and, accordingly, enhanced the Ca2+ response of cultured rat glomerulosa cells to K+. In the present study we found that this enhancement is not influenced by the cytoskeleton-disrupting drugs cytochalasin-D (20 microM) and colchicine (100 microM). Elevation of extracellular potassium concentration ([K+]e) from 3.6 to 4.6-8.6 mM induced cell swelling, which had slower kinetics than the Ca2+ signal. Cytoplasmic Ca2+ signal measured in single glomerulosa cells in response to stimulation with 5 mm K+ for 2 min showed two phases: after a rapid rise reaching a plateau within 20-30 sec, [Ca2+]c increased further slowly by approximately one third. When 5 mM K+ was coapplied with elevation of extracellular osmolarity from 290 to 320 mOsm, the second phase was prevented. These results indicate that cell swelling evoked by physiological elevation of [K+]e may contribute to the generation of sustained Ca2+ signals by enhancing voltage-activated Ca2+ influx.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Potasio/farmacología , Zona Glomerular/citología , Zona Glomerular/fisiología , Animales , Calcio/metabolismo , Tamaño de la Célula/fisiología , Colchicina/farmacología , Citocalasina D/farmacología , Citoplasma/metabolismo , Citoesqueleto/efectos de los fármacos , Citoesqueleto/fisiología , Cinética , Masculino , Concentración Osmolar , Ratas , Ratas Wistar
17.
Mol Cell Neurosci ; 23(4): 521-30, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12932434

RESUMEN

Chloride channels are important for astrocytic volume regulation and K+ buffering. We demonstrate functional expression of a hyperpolarization-activated Cl- current in a subpopulation of astrocytes in acute slices or after fresh isolation from adult brain of GFAP/EGFP transgenic animals in which astrocytes are selectively labeled. When Na+ and K+ were substituted with NMDG+ and Cs+ in extra- and intracellular solutions, an inward current was observed at negative membrane potentials. The current displayed features as described for a Cl- current characterized in cultured astrocytes: it activated time dependently at potentials negative to -40 mV, displayed no inactivation within 1 s, and was inhibited reversibly by submicromolar concentrations of Cd2+. The current was not detectable in astrocytes from ClC-2 knockout mice, indicating that the ClC-2 chloride channel generated the conductance. Current density was significantly lower in a corresponding population of astrocytes isolated from immature brain and in reactive astrocytes within a lesion site.


Asunto(s)
Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Canales de Cloruro/deficiencia , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Encéfalo/citología , Lesiones Encefálicas/genética , Canales de Cloruro CLC-2 , Cadmio/farmacología , Membrana Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Cesio/farmacología , Canales de Cloruro/genética , Cloruros/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/genética , Gliosis/metabolismo , Proteínas Fluorescentes Verdes , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Proteínas Luminiscentes , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Técnicas de Cultivo de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...