Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
2.
medRxiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853922

RESUMEN

Although large-scale genetic association studies have proven opportunistic for the delineation of neurodegenerative disease processes, we still lack a full understanding of the pathological mechanisms of these diseases, resulting in few appropriate treatment options and diagnostic challenges. To mitigate these gaps, the Neurodegenerative Disease Knowledge Portal (NDKP) was created as an open-science initiative with the aim to aggregate, enable analysis, and display all available genomic datasets of neurodegenerative disease, while protecting the integrity and confidentiality of the underlying datasets. The portal contains 218 genomic datasets, including genotyping and sequencing studies, of individuals across ten different phenotypic groups, including neurological conditions such as Alzheimer's disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson's disease. In addition to securely hosting large genomic datasets, the NDKP provides accessible workflows and tools to effectively utilize the datasets and assist in the facilitation of customized genomic analyses. Here, we summarize the genomic datasets currently included within the portal, the bioinformatics processing of the datasets, and the variety of phenotypes captured. We also present example use-cases of the various user interfaces and integrated analytic tools to demonstrate their extensive utility in enabling the extraction of high-quality results at the source, for both genomics experts and those in other disciplines. Overall, the NDKP promotes open-science and collaboration, maximizing the potential for discovery from the large-scale datasets researchers and consortia are expending immense resources to produce and resulting in reproducible conclusions to improve diagnostic and therapeutic care for neurodegenerative disease patients.

3.
NPJ Parkinsons Dis ; 10(1): 108, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789445

RESUMEN

A biallelic (AAGGG) expansion in the poly(A) tail of an AluSx3 transposable element within the gene RFC1 is a frequent cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), and more recently, has been reported as a rare cause of Parkinson's disease (PD) in the Finnish population. Here, we investigate the prevalence of RFC1 (AAGGG) expansions in PD patients of non-Finnish European ancestry in 1609 individuals from the Parkinson's Progression Markers Initiative study. We identified four PD patients carrying the biallelic RFC1 (AAGGG) expansion and did not identify any carriers in controls.

4.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585876

RESUMEN

GenoTools, a Python package, streamlines population genetics research by integrating ancestry estimation, quality control (QC), and genome-wide association studies (GWAS) capabilities into efficient pipelines. By tracking samples, variants, and quality-specific measures throughout fully customizable pipelines, users can easily manage genetics data for large and small studies. GenoTools' "Ancestry" module renders highly accurate predictions, allowing for high-quality ancestry-specific studies, and enables custom ancestry model training and serialization, specified to the user's genotyping or sequencing platform. As the genotype processing engine that powers several large initiatives including the NIH's Center for Alzheimer's and Related Dementias (CARD) and the Global Parkinson's Genetics Program (GP2). GenoTools was used to process and analyze the UK Biobank and major Alzheimer's Disease (AD) and Parkinson's Disease (PD) datasets with over 400,000 genotypes from arrays and 5000 sequences and has led to novel discoveries in diverse populations. It has provided replicable ancestry predictions, implemented rigorous QC, and conducted genetic ancestry-specific GWAS to identify systematic errors or biases through a single command. GenoTools is a customizable tool that enables users to efficiently analyze and scale genotype data with reproducible and scalable ancestry, QC, and GWAS pipelines.

5.
Patterns (N Y) ; 5(3): 100945, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38487808

RESUMEN

While machine learning (ML) research has recently grown more in popularity, its application in the omics domain is constrained by access to sufficiently large, high-quality datasets needed to train ML models. Federated learning (FL) represents an opportunity to enable collaborative curation of such datasets among participating institutions. We compare the simulated performance of several models trained using FL against classically trained ML models on the task of multi-omics Parkinson's disease prediction. We find that FL model performance tracks centrally trained ML models, where the most performant FL model achieves an AUC-PR of 0.876 ± 0.009, 0.014 ± 0.003 less than its centrally trained variation. We also determine that the dispersion of samples within a federation plays a meaningful role in model performance. Our study implements several open-source FL frameworks and aims to highlight some of the challenges and opportunities when applying these collaborative methods in multi-omics studies.

6.
Mov Disord ; 39(4): 728-733, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38390630

RESUMEN

BACKGROUND: Rapid eye movement (REM) sleep behavior disorder (RBD) is an early feature of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Damaging coding variants in Glucocerebrosidase (GBA1) are a genetic risk factor for RBD. Recently, a population-specific non-coding risk variant (rs3115534) was found to be associated with PD risk and earlier onset in individuals of African ancestry. OBJECTIVES: We aimed to investigate whether the GBA1 rs3115534 PD risk variant is associated with RBD in persons with PD. METHODS: We studied 709 persons with PD and 776 neurologically healthy controls from Nigeria. All DNA samples were genotyped and imputed, and the GBA1 rs3115534 risk variant was extracted. The RBD screening questionnaire (RBDSQ) was used to assess symptoms of possible RBD. RESULTS: RBD was present in 200 PD (28.2%) and 51 (6.6%) controls. We identified that the non-coding GBA1 rs3115534 risk variant is associated with possible RBD in individuals of Nigerian origin (ß, 0.3640; standard error [SE], 0.103, P = 4.093e-04), as well as in all samples after adjusting for PD status (ß, 0.2542; SE, 0.108; P = 0.019) suggesting that although non-coding, this variant may have the same downstream consequences as GBA1 coding variants. CONCLUSIONS: Our results indicate that the non-coding GBA1 rs3115534 risk variant is associated with an increasing number of RBD symptoms in persons with PD of Nigerian origin. Further research is needed to assess if this variant is also associated with polysomnography-defined RBD and with RBD symptoms in DLB. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Pueblo de África Occidental , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Genotipo , Glucosilceramidasa/genética , Nigeria , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/complicaciones , Polimorfismo de Nucleótido Simple , Trastorno de la Conducta del Sueño REM/genética , Adulto Joven , Adulto
7.
Am J Hum Genet ; 111(1): 150-164, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181731

RESUMEN

Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Recursos Comunitarios , Multiómica , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Análisis de la Aleatorización Mendeliana
8.
NPJ Parkinsons Dis ; 10(1): 11, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191580

RESUMEN

Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. We assessed a total of 27,590 PD cases, 6701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. The meta-analysis resulted in five significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. Another eight variants are strong candidate variants for their association with PD. Here, we provide the largest rare variant meta-analysis to date, providing information on confirmed and newly identified variants for their association with PD using several large databases. Additionally we also show the complexities of studying rare variants in large-scale cohorts.

9.
Neurobiol Aging ; 134: 66-73, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37992546

RESUMEN

Parkinson's disease (PD) is a progressive neurological disorder caused by both genetic and environmental factors. An association has been described between KTN1 genetic variants and changes in its expression in the putamen and substantia nigra brain regions and an increased risk for PD. Here, we examine the link between PD susceptibility and KTN1 using individual-level genotyping data and summary statistics from the most recent genome-wide association studies (GWAS) for PD risk and age at onset from the International Parkinson's Disease Genomics Consortium (IPDGC), as well as whole-genome sequencing data from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative. To investigate the potential effect of changes in KTN1 expression on PD compared to unaffected individuals, we further assess publicly available expression quantitative trait loci (eQTL) results from GTEx v8 and BRAINEAC and transcriptomics data from AMP-PD. Overall, we found no genetic associations between KTN1 and PD in our cohorts but found potential evidence of differences in mRNA expression, which needs to be further explored.


Asunto(s)
Proteínas de la Membrana , Enfermedad de Parkinson , Humanos , Transcriptoma , Enfermedad de Parkinson/genética , Putamen/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , ARN Mensajero , Persona de Mediana Edad , Variación Genética , Estudios de Cohortes , Proteínas de la Membrana/genética
10.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986893

RESUMEN

While machine learning (ML) research has recently grown more in popularity, its application in the omics domain is constrained by access to sufficiently large, high-quality datasets needed to train ML models. Federated Learning (FL) represents an opportunity to enable collaborative curation of such datasets among participating institutions. We compare the simulated performance of several models trained using FL against classically trained ML models on the task of multi-omics Parkinson's Disease prediction. We find that FL model performance tracks centrally trained ML models, where the most performant FL model achieves an AUC-PR of 0.876 ± 0.009, 0.014 ± 0.003 less than its centrally trained variation. We also determine that the dispersion of samples within a federation plays a meaningful role in model performance. Our study implements several open source FL frameworks and aims to highlight some of the challenges and opportunities when applying these collaborative methods in multi-omics studies.

11.
Nat Genet ; 56(1): 27-36, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38155330

RESUMEN

Although over 90 independent risk variants have been identified for Parkinson's disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson's disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson , Humanos , Estudio de Asociación del Genoma Completo/métodos , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Ubiquitina Tiolesterasa/genética
12.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38076854

RESUMEN

Background: Damaging coding variants in GBA1 are a genetic risk factor for rapid eye movement sleep behavior disorder (RBD), which is a known early feature of synucleinopathies. Recently, a population-specific non-coding variant (rs3115534) was found to be associated with PD risk and earlier disease onset in individuals of African ancestry. Objectives: To investigate whether the GBA1 rs3115534 PD risk variant is associated with RBD. Methods: We studied 709 persons with PD and 776 neurologically healthy controls from Nigeria. The GBA1 rs3115534 risk variant status was imputed from previous genotyping for all. Symptoms of RBD were assessed with the RBD screening questionnaire (RBDSQ). Results: The non-coding GBA1 rs3115534 risk variant is associated with possible RBD in individuals of Nigerian origin (Beta = 0.3640, SE = 0.103, P =4.093e-04), as well as after adjusting for PD status (Beta = 0.2542, SE = 0.108, P = 0.019) suggesting that this variant may have the same downstream consequences as GBA1 coding variants. Conclusions: We show that the non-coding GBA1 rs3115534 risk variant is associated with increased RBD symptomatology in Nigerians with PD. Further research is required to assess association with polysomnography-defined RBD.

13.
medRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076954

RESUMEN

Objective: This study aims to address disparities in risk prediction by evaluating the performance of polygenic risk score (PRS) models using the 90 risk variants across 78 independent loci previously linked to Parkinson's disease (PD) risk across seven diverse ancestry populations. Methods: We conducted a multi-stage study, testing PRS models in predicting PD status across seven different ancestries applying three approaches: 1) PRS adjusted by gender and age; 2) PRS adjusted by gender, age and principal components (PCs); and 3) PRS adjusted by gender, age and percentage of population admixture. These models were built using the largest four population-specific summary statistics of PD risk to date (base data) and individual level data obtained from the Global Parkinson's Genetics Program (target data). We performed power calculations to estimate the minimum sample size required to conduct these analyses. A total of 91 PRS models were developed to investigate cumulative known genetic variation associated with PD risk and age of onset in a global context. Results: We observed marked heterogeneity in risk estimates across non-European ancestries, including East Asians, Central Asians, Latino/Admixed Americans, Africans, African admixed, and Ashkenazi Jewish populations. Risk allele patterns for the 90 risk variants yielded significant differences in directionality, frequency, and magnitude of effect. PRS did not improve in performance when predicting disease status using similar base and target data across multiple ancestries, demonstrating that cumulative PRS models based on current known risk are inherently biased towards European populations. We found that PRS models adjusted by percentage of admixture outperformed models that adjusted for conventional PCs in highly admixed populations. Overall, the clinical utility of our models in individually predicting PD status is limited in concordance with the estimates observed in European populations. Interpretation: This study represents the first comprehensive assessment of how PRS models predict PD risk and age at onset in a multi-ancestry fashion. Given the heterogeneity and distinct genetic architecture of PD across different populations, our assessment emphasizes the need for larger and diverse study cohorts of individual-level target data and well-powered ancestry-specific summary statistics. Our current understanding of PD status unraveled through GWAS in European populations is not generally applicable to other ancestries. Future studies should integrate clinical and *omics level data to enhance the accuracy and predictive power of PRS across diverse populations.

14.
Mov Disord ; 38(12): 2249-2257, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926948

RESUMEN

BACKGROUND: Parkin RBR E3 ubiquitin-protein ligase (PRKN) mutations are the most common cause of young onset and autosomal recessive Parkinson's disease (PD). PRKN is located in FRA6E, which is one of the common fragile sites in the human genome, making this region prone to structural variants. However, complex structural variants such as inversions of PRKN are seldom reported, suggesting that there are potentially unrevealed complex pathogenic PRKN structural variants. OBJECTIVES: To identify complex structural variants in PRKN using long-read sequencing. METHODS: We investigated the genetic cause of monozygotic twins presenting with a young onset dystonia-parkinsonism using targeted sequencing, whole exome sequencing, multiple ligation probe amplification, and long-read sequencing. We assessed the presence and frequency of complex inversions overlapping PRKN using whole-genome sequencing data of Accelerating Medicines Partnership Parkinson's disease (AMP-PD) and United Kingdom (UK)-Biobank datasets. RESULTS: Multiple ligation probe amplification identified a heterozygous exon three deletion in PRKN and long-read sequencing identified a large novel inversion spanning over 7 Mb, including a large part of the coding DNA sequence of PRKN. We could diagnose the affected subjects as compound heterozygous carriers of PRKN. We analyzed whole genome sequencing data of 43,538 participants of the UK-Biobank and 4941 participants of the AMP-PD datasets. Nine inversions in the UK-Biobank and two in AMP PD were identified and were considered potentially damaging and likely to affect PRKN expression. CONCLUSIONS: This is the first report describing a large 7 Mb inversion involving breakpoints outside of PRKN. This study highlights the importance of using long-read sequencing for structural variant analysis in unresolved young-onset PD cases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Heterocigoto , Mutación/genética , Enfermedad de Parkinson/genética , Trastornos Parkinsonianos/genética , Ubiquitina-Proteína Ligasas/genética
15.
medRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37986980

RESUMEN

Genome-wide genotyping platforms have the capacity to capture genetic variation across different populations, but there have been disparities in the representation of population-dependent genetic diversity. The motivation for pursuing this endeavor was to create a comprehensive genome-wide array capable of encompassing a wide range of neuro-specific content for the Global Parkinson's Genetics Program (GP2) and the Center for Alzheimer's and Related Dementias (CARD). CARD aims to increase diversity in genetic studies, using this array as a tool to foster inclusivity. GP2 is the first supported resource project of the Aligning Science Across Parkinson's (ASAP) initiative that aims to support a collaborative global effort aimed at significantly accelerating the discovery of genetic factors contributing to Parkinson's disease and atypical parkinsonism by generating genome-wide data for over 200,000 individuals in a multi-ancestry context. Here, we present the Illumina NeuroBooster array (NBA), a novel, high-throughput and cost-effective custom-designed content platform to screen for genetic variation in neurological disorders across diverse populations. The NBA contains a backbone of 1,914,934 variants (Infinium Global Diversity Array) complemented with custom content of 95,273 variants implicated in over 70 neurological conditions or traits with potential neurological complications. Furthermore, the platform includes over 10,000 tagging variants to facilitate imputation and analyses of neurodegenerative disease-related GWAS loci across diverse populations. The NBA can identify low frequency variants and accurately impute over 15 million common variants from the latest release of the TOPMed Imputation Server as of August 2023 (reference of over 300 million variants and 90,000 participants). We envisage this valuable tool will standardize genetic studies in neurological disorders across different ancestral groups, allowing researchers to perform genetic research inclusively and at a global scale.

16.
medRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790330

RESUMEN

Background: PRKN mutations are the most common cause of young onset and autosomal recessive Parkinson's disease (PD). PRKN is located in FRA6E which is one of the common fragile sites in the human genome, making this region prone to structural variants. However, complex structural variants such as inversions of PRKN are seldom reported, suggesting that there are potentially unrevealed complex pathogenic PRKN structural variants. Objectives: To identify complex structural variants in PRKN using long-read sequencing. Methods: We investigated the genetic cause of monozygotic twins presenting with a young onset dystonia-parkinsonism using targeted sequencing, whole exome sequencing, multiple ligation probe amplification, and long-read. We assessed the presence and frequency of complex inversions overlapping PRKN using whole-genome sequencing data of AMP-PD and UK-Biobank datasets. Results: Multiple ligation probe amplification identified a heterozygous exon 3 deletion in PRKN and long-read sequencing identified a large novel inversion spanning over 7Mb, including a large part of the coding DNA sequence of PRKN. We could diagnose the affected subjects as compound heterozygous carriers of PRKN. We analyzed whole genome sequencing data of 43,538 participants of the UK-Biobank and 4,941 participants of the AMP-PD datasets. Nine inversions in the UK-Biobank and two in AMP PD were identified and were considered potentially damaging and likely to affect PRKN isoforms. Conclusions: This is the first report describing a large 7Mb inversion involving breakpoints outside of PRKN. This study highlights the importance of using long-read whole genome sequencing for structural variant analysis in unresolved young-onset PD cases.

17.
NPJ Parkinsons Dis ; 9(1): 131, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699923

RESUMEN

The Global Parkinson's Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia.

18.
Lancet Neurol ; 22(11): 1015-1025, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37633302

RESUMEN

BACKGROUND: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson's disease in these underserved populations. METHODS: We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson's disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson's Genetics Program, the International Parkinson's Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson's disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. FINDINGS: We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson's disease (overall meta-analysis odds ratio for risk of Parkinson's disease 1·58 [95% CI 1·37-1·80], p=2·397 × 10-14) and age at onset at the GBA1 locus, rs3115534-G (age at onset ß=-2·00 [SE=0·57], p=0·0005, for African ancestry; and ß=-4·15 [0·58], p=0·015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. INTERPRETATION: Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson's disease in African populations. This population-specific variant exerts substantial risk on Parkinson's disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson's disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson's disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson's disease. FUNDING: The Global Parkinson's Genetics Program, which is funded by the Aligning Science Across Parkinson's initiative, and The Michael J Fox Foundation for Parkinson's Research.


Asunto(s)
Pueblo Africano , Enfermedad de Parkinson , Humanos , Población Negra/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Enfermedad de Parkinson/etnología , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple/genética , Pueblo Africano/genética
19.
medRxiv ; 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37398408

RESUMEN

Background: Understanding the genetic mechanisms underlying diseases in ancestrally diverse populations is a critical step towards the realization of the global application of precision medicine. The African and African admixed populations enable mapping of complex traits given their greater levels of genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. Methods: Here we perform a comprehensive genome-wide assessment of Parkinson's disease (PD) in 197,918 individuals (1,488 cases; 196,430 controls) of African and African admixed ancestry, characterizing population-specific risk, differential haplotype structure and admixture, coding and structural genetic variation and polygenic risk profiling. Findings: We identified a novel common risk factor for PD and age at onset at the GBA1 locus (risk, rs3115534-G; OR=1.58, 95% CI = 1.37 - 1.80, P=2.397E-14; age at onset, BETA =-2.004, SE =0.57, P = 0.0005), that was found to be rare in non-African/African admixed populations. Downstream short- and long-read whole genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. However, we identified that this signal mediates PD risk via expression quantitative trait locus (eQTL) mechanisms. While previously identified GBA1 associated disease risk variants are coding mutations, here we suggest a novel functional mechanism consistent with a trend in decreasing glucocerebrosidase activity levels. Given the high population frequency of the underlying signal and the phenotypic characteristics of the homozygous carriers, we hypothesize that this variant may not cause Gaucher disease. Additionally, the prevalence of Gaucher's disease in Africa is low. Interpretation: The present study identifies a novel African-ancestry genetic risk factor in GBA1 as a major mechanistic basis of PD in the African and African admixed populations. This striking result contrasts to previous work in Northern European populations, both in terms of mechanism and attributable risk. This finding highlights the importance of understanding population-specific genetic risk in complex diseases, a particularly crucial point as the field moves toward precision medicine in PD clinical trials and while recognizing the need for equitable inclusion of ancestrally diverse groups in such trials. Given the distinctive genetics of these underrepresented populations, their inclusion represents a valuable step towards insights into novel genetic determinants underlying PD etiology. This opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk. Evidence Before this Study: Our current understanding of Parkinson's disease (PD) is disproportionately based on studying populations of European ancestry, leading to a significant gap in our knowledge about the genetics, clinical characteristics, and pathophysiology in underrepresented populations. This is particularly notable in individuals of African and African admixed ancestries. Over the last two decades, we have witnessed a revolution in the research area of complex genetic diseases. In the PD field, large-scale genome-wide association studies in the European, Asian, and Latin American populations have identified multiple risk loci associated with disease. These include 78 loci and 90 independent signals associated with PD risk in the European population, nine replicated loci and two novel population-specific signals in the Asian population, and a total of 11 novel loci recently nominated through multi-ancestry GWAS efforts.Nevertheless, the African and African admixed populations remain completely unexplored in the context of PD genetics. Added Value of this Study: To address the lack of diversity in our research field, this study aimed to conduct the first genome-wide assessment of PD genetics in the African and African admixed populations. Here, we identified a genetic risk factor linked to PD etiology, dissected African-specific differences in risk and age at onset, characterized known genetic risk factors, and highlighted the utility of the African and African admixed risk haplotype substructure for future fine-mapping efforts. We identified a novel disease mechanism via expression changes consistent with decreased GBA1 activity levels. Future large scale single cell expression studies should investigate the neuronal populations in which expression differences are most prominent. This novel mechanism may hold promise for future efficient RNA-based therapeutic strategies such as antisense oligonucleotides or short interfering RNAs aimed at preventing and decreasing disease risk. We envisage that these data generated under the umbrella of the Global Parkinson's Genetics Program (GP2) will shed light on the molecular mechanisms involved in the disease process and might pave the way for future clinical trials and therapeutic interventions. This work represents a valuable resource in an underserved population, supporting pioneering research within GP2 and beyond. Deciphering causal and genetic risk factors in all these ancestries will help determine whether interventions, potential targets for disease modifying treatment, and prevention strategies that are being studied in the European populations are relevant to the African and African admixed populations. Implications of all the Available Evidence: We nominate a novel signal impacting GBA1 as the major genetic risk factor for PD in the African and African admixed populations. The present study could inform future GBA1 clinical trials, improving patient stratification. In this regard, genetic testing can help to design trials likely to provide meaningful and actionable answers. It is our hope that these findings may ultimately have clinical utility for this underrepresented population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...