Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(9): 2758-2764, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407023

RESUMEN

Meta-atoms are the building blocks of metamaterials, which are employed to control both generation and propagation of light as well as provide novel functionalities of localization and directivity of electromagnetic radiation. In many cases, simple dielectric or metallic resonators are employed as meta-atoms to create different types of electromagnetic metamaterials. Here, we fabricate and study supercrystal meta-atoms composed of coupled perovskite quantum dots. We reveal that these multiscale structures exhibit specific emission properties, such as spectrum splitting and polaritonic effects. We believe that such multiscale supercrystal meta-atoms will provide novel functionalities in the design of many novel types of active metamaterials and metasurfaces.

2.
J Phys Chem Lett ; 15(2): 540-548, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38197909

RESUMEN

Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden-Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap. To extend the color gamut of photoluminescence, we use mixed-halide compositions that exhibit photoinduced halide segregation. The emission of the films can be tuned across the range of 450-600 nm. Laser irradiation provides high-resolution direct writing, whereas continuous-wave ultraviolet exposure is suitable for recording on larger scales. The luminescent images created on such films can be erased during the visualization process. This makes the proposed writing/erasing platform suitable for the manufacturing of optical data storage devices and light-erasable security labels.

3.
ACS Nano ; 18(4): 3447-3455, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252695

RESUMEN

Ultrafast all-optical modulation with optically resonant nanostructures is an essential technology for high-speed signal processing on a compact optical chip. Key challenges that exist in this field are relatively low and slow modulations in the visible range as well as the use of expensive materials. Here we develop an ultrafast all-optical modulator based on MAPbBr3 perovskite metasurface supporting exciton-polariton states with exceptional points. The additional angular and spectral filtering of the modulated light transmitted through the designed metasurface allows us to achieve 2500% optical signal modulation with the shortest modulation time of 440 fs at the pump fluence of ∼40 µJ/cm2. Such a value of the modulation depth is record-high among the existing modulators in the visible range, while the main physical effect behind it is polariton condensation. Scalable and cheap metasurface fabrication via nanoimprint lithography along with the simplicity of perovskite synthesis and deposition make the developed approach promising for real-life applications.

4.
ACS Mater Au ; 3(4): 337-350, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38090127

RESUMEN

We demonstrate that the power conversion efficiency (PCE), photocurrent, and fill factor (FF) of perovskite solar cells (PSC) can be significantly improved by the photoinduced self-gating in ionic liquids (ILs) via n-doping of the carbon nanotube (CNT) top electrode on the fullerene electron transport layer (ETL). CNTs, graphene, and other carbon electrodes have been proven to be stable electrodes for PSC, but efficiency was not high. We have previously shown that the performance of PSCs with CNT electrodes can be improved by IL gating with gate voltage (Vg) applied from an external power source. Here we demonstrate that effective self-gating in ILs is possible by a photoinduced process, without an external source. The open circuit voltage (Voc) generated by the PSC itself can be applied to the CNT/C60 electrode as Vg leading to photogating. This self-gating with Voc is compared to photocharging of CNTs in ILs without any gating for two types of fullerene ETLs: C60 and C70, Two types of ILs, DEME-TFSI and BMIM-BF4, are tested for two types of nanotubes electrodes: single wall (SWCNT), and multiwall (MWCNT). The resulting improvements are analyzed using the effective diode-circuit (DC) and the drift-diffusion (DD) models. Self-gating allows the PCE improvement from 3-5% to 10-11% for PSCs with a thick ETL, while for optimal combination of a thin SWCNT/ETL with added layers for improved stability, the PCE reached 13.2% in DEME-TFSI IL.

5.
Light Sci Appl ; 12(1): 237, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37723158

RESUMEN

Electric field is a powerful instrument in nanoscale engineering, providing wide functionalities for control in various optical and solid-state nanodevices. The development of a single optically resonant nanostructure operating with a charge-induced electrical field is challenging, but it could be extremely useful for novel nanophotonic horizons. Here, we show a resonant metal-semiconductor nanostructure with a static electric field created at the interface between its components by charge carriers generated via femtosecond laser irradiation. We study this field experimentally, probing it by second-harmonic generation signal, which, in our system, is time-dependent and has a non-quadratic signal/excitation power dependence. The developed numerical models reveal the influence of the optically induced static electric field on the second harmonic generation signal. We also show how metal work function and silicon surface defect density for different charge carrier concentrations affect the formation of this field. We estimate the value of optically-generated static electric field in this nanoantenna to achieve ≈108V/m. These findings pave the way for the creation of nanoantenna-based optical memory, programmable logic and neuromorphic devices.

6.
Opt Express ; 31(16): 26383-26397, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710501

RESUMEN

Here we demonstrate the results of investigating the damage threshold of a LiF crystal after irradiating it with a sequence of coherent femtosecond pulses using the European X-ray Free Electron Laser (EuXFEL). The laser fluxes on the crystal surface varied in the range ∼ 0.015-13 kJ/cm2 per pulse when irradiated with a sequence of 1-100 pulses (tpulse ∼ 20 fs, Eph = 9 keV). Analysis of the surface of the irradiated crystal using different reading systems allowed the damage areas and the topology of the craters formed to be accurately determined. It was found that the ablation threshold decreases with increasing number of X-ray pulses, while the depth of the formed craters increases non-linearly and reaches several hundred nanometers. The obtained results have been compared with data already available in the literature for nano- and picosecond pulses from lasers in the soft X-ray/VUV and optical ranges. A failure model of lithium fluoride is developed and verified with simulation of material damage under single-pulse irradiation. The obtained damage threshold is in reasonably good agreement with the experimentally measured one.

7.
Brain Stimul ; 16(4): 1021-1031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37307872

RESUMEN

PURPOSE: Multichannel Transcranial Magnetic Stimulation (mTMS) [1] is a novel non-invasive brain stimulation technique allowing multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. To enable simultaneous mTMS and MR imaging, we have designed and constructed a whole-head 28-channel receive-only RF coil at 3T. METHODS: A helmet-shaped structure was designed considering a specific layout for a mTMS system with holes for positioning the TMS units next to the scalp. Diameter of the TMS units defined the diameter of RF loops. The placement of the preamplifiers was designed to minimize possible interactions and to allow straightforward positioning of the mTMS units around the RF coil. Interactions between TMS-MRI were analyzed for the whole-head system extending the results presented in previous publications [2]. Both SNR- and g-factors maps were obtained to compare the imaging performance of the coil with commercial head coils. RESULTS: Sensitivity losses for the RF elements containing TMS units show a well-defined spatial pattern. Simulations indicate that the losses are predominantly caused by eddy currents on the coil wire windings. The average SNR performance of the TMSMR 28-channel coil is about 66% and 86% of the SNR of the 32/20-channel head coil respectively. The g-factor values of the TMSMR 28-channel coil are similar to the 32-channel coil and significantly better than the 20-channel coil. CONCLUSION: We present the TMSMR 28-channel coil, a head RF coil array to be integrated with a multichannel 3-axisTMS coil system, a novel tool that will enable causal mapping of human brain function.


Asunto(s)
Encéfalo , Estimulación Magnética Transcraneal , Humanos , Encéfalo/diagnóstico por imagen , Estimulación Magnética Transcraneal/métodos , Imagen por Resonancia Magnética/métodos , Técnicas Estereotáxicas , Cuero Cabelludo , Fantasmas de Imagen , Diseño de Equipo
8.
Front Endocrinol (Lausanne) ; 14: 1127173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152923

RESUMEN

Background: Insulinomas are very rare in childhood with sparse knowledge on the clinical aspects and the presence of Multiple Endocrine Neoplasia type 1 (MEN1). Methods: We conducted a retrospective review of patients diagnosed with insulinoma between 1995 and 2021, presenting to one referral centre in Russia. Clinical, biochemical, genetic, imaging and histological data were collected. In addition, follow-up and family data were obtained. Results: A total of twenty-two children aged 5 to 16 years were identified. The median (range) gap between the first hypoglycaemia symptoms and diagnosis was 10 (1-46) months. Twelve children (55%) were misdiagnosed to have epilepsy and were treated with anticonvulsants before hypoglycemia was revealed. Contrast enhanced MRI and/or CT were accurate to localize the lesion in 82% (n=18). Five patients (23%) had multiple pancreatic lesions. All children underwent surgical treatment. The median (range) diameter of removed tumors was 1.5 (0.3-6) cm. Histopathological studies confirmed the presence of insulinoma in all cases. Immunohistochemical studies revealed G2 differentiation grade in 10 out of 17 cases. Two patients were diagnosed with metastatic insulinoma. One of them had metastases at the time of insulinoma diagnosis, while the other was diagnosed with liver metastases eight years after the surgery. Eight children (36%) were found to carry MEN1 mutations, inherited n=5, de novo n=1, no data, n=2. Children with MEN1 had significantly higher number of pancreatic tumors compared to sporadic cases. All of them developed additional MEN1 symptoms during the following 2-13 years. In the five patients with inherited MEN1, seven family members had hitherto undiscovered MEN1 manifestations. Conclusions: In this large cohort of children with rare pediatric insulinomas, MEN1 syndrome and G2 tumors were frequent, as well as hitherto undiscovered MEN1 manifestations in family members. Our data emphasize the need of genetic testing in all children with insulinoma and their relatives, even in the absence of any other features, as well as the importance of a prolonged follow-up observation.


Asunto(s)
Hipoglucemia , Insulinoma , Neoplasia Endocrina Múltiple Tipo 1 , Neoplasias Pancreáticas , Humanos , Niño , Insulinoma/diagnóstico , Insulinoma/genética , Insulinoma/patología , Estudios Retrospectivos , Neoplasia Endocrina Múltiple Tipo 1/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Derivación y Consulta
9.
Nanomaterials (Basel) ; 13(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37177108

RESUMEN

Nonlinear silicon photonics has a high compatibility with CMOS technology and therefore is particularly attractive for various purposes and applications. Second harmonic generation (SHG) in silicon nanowires (NWs) is widely studied for its high sensitivity to structural changes, low-cost fabrication, and efficient tunability of photonic properties. In this study, we report a fabrication and SHG study of Si nanowire/siloxane flexible membranes. The proposed highly transparent flexible membranes revealed a strong nonlinear response, which was enhanced via activation by an infrared laser beam. The vertical arrays of several nanometer-thin Si NWs effectively generate the SH signal after being exposed to femtosecond infrared laser irradiation in the spectral range of 800-1020 nm. The stable enhancement of SHG induced by laser exposure can be attributed to the functional modifications of the Si NW surface, which can be used for the development of efficient nonlinear platforms based on silicon. This study delivers a valuable contribution to the advancement of optical devices based on silicon and presents novel design and fabrication methods for infrared converters.

10.
Nanoscale ; 15(16): 7482-7492, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37017125

RESUMEN

Ligand-free methods for the synthesis of halide perovskite nanocrystals are of great interest because of their excellent performance in optoelectronics and photonics. In addition, template-assisted synthesis methods have become a powerful tool for the fabrication of environmentally stable and bright nanocrystals. Here we develop a novel approach for the facile ligand-free template-assisted fabrication of perovskite nanocrystals with a near-unity absolute quantum yield, which involves CaCO3 vaterite micro- and submicrospheres as templates. We show that the optical properties of the obtained nanocrystals are affected not mainly by the template morphology, but strongly depend on the concentration of precursor solutions, anion and cation ratio, as well as on adding defect-passivating rare-earth dopants. The optimized samples are further tested as infrared radiation visualizers exhibiting promising characteristics comparable to those that are commercially available.

11.
ACS Nano ; 17(10): 9235-9244, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36976247

RESUMEN

Halide perovskites belong to an important family of semiconducting materials with electronic properties that enable a myriad of applications, especially in photovoltaics and optoelectronics. Their optical properties, including photoluminescence quantum yield, are affected and notably enhanced at crystal imperfections where the symmetry is broken and the density of states increases. These lattice distortions can be introduced through structural phase transitions, allowing charge gradients to appear near the interfaces between phase structures. In this work, we demonstrate controlled multiphase structuring in a single perovskite crystal. The concept uses cesium lead bromine (CsPbBr3) placed on a thermoplasmonic TiN/Si metasurface and enables single-, double-, and triple-phase structures to form on demand above room temperature. This approach promises application horizons of dynamically controlled heterostructures with distinctive electronic and enhanced optical properties.

12.
Nanomaterials (Basel) ; 13(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985859

RESUMEN

Optically resonant silicon nanoparticles have emerged as a prospective platform for the structural coloration of surfaces because of their strong and spectrally selective light scattering. In this work, we developed colorful inks based on polymer mixed with monodisperse Mie-resonant silicon nanoparticles for 3D and inkjet printing. We applied a laser ablation method in a flow cell for the mass production of silicon nanoparticles in water and separated the resulting nanoparticles with different sizes by density-gradient centrifugation. Mixing the colorful nanoparticles with the polymer allows for the printing of 3D objects with various shapes and colors, which are rigid against environmental conditions.

13.
Nano Lett ; 23(7): 2570-2577, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36920328

RESUMEN

During the last years, giant optical anisotropy has demonstrated its paramount importance for light manipulation. In spite of recent advances in the field, the achievement of continuous tunability of optical anisotropy remains an outstanding challenge. Here, we present a solution to the problem through the chemical alteration of halogen atoms in single-crystal halide perovskites. As a result, we manage to continually modify the optical anisotropy by 0.14. We also discover that the halide perovskite can demonstrate optical anisotropy up to 0.6 in the visible range─the largest value among non-van der Waals materials. Moreover, our results reveal that this anisotropy could be in-plane and out-of-plane depending on perovskite shape─rectangular and square. As a practical demonstration, we have created perovskite anisotropic nanowaveguides and shown a significant impact of anisotropy on high-order guiding modes. These findings pave the way for halide perovskites as a next-generation platform for tunable anisotropic photonics.

14.
Dalton Trans ; 52(14): 4595-4605, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36928166

RESUMEN

A novel series of cyclometalated platinum(II) complexes bearing acyclic diaminocarbene (ADC) ancillary ligands were designed and prepared. Their photophysical properties were systematically studied through experimental and theoretical investigations. All complexes exhibit green phosphorescence with a quantum efficiency of up to 45% in 2 wt% doped PMMA film at room temperature. The complexes are used as light-emitting dopants for organic light-emitting diode (OLED) fabrication. The devices displayed a green emission with a maximum current efficiency of 2.9 cd A-1 and a luminance of 2700 cd m-2. These results show that these cyclometalated platinum(II) complexes can be used as efficient green emitting components of OLED devices.

15.
Pharmaceutics ; 15(2)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36839856

RESUMEN

Because of their high biocompatibility, biological barrier negotiation, and functionalization properties, biological nanoparticles have been actively investigated for many medical applications. Biological nanoparticles, including natural extracellular vesicles (EVs) and synthetic extracellular vesicle-mimetic nanovesicles (EMNVs), represent novel drug delivery vehicles that can accommodate different payloads. In this study, we investigated the physical, biological, and delivery properties of EVs and EMNVs and analyzed their ability to deliver the chemotherapeutic drug doxorubicin. EMNVs and EVs exhibit similar properties, but EMNVs are more effectively internalized, while EVs show higher intracellular doxorubicin release activity. In addition, these nanotherapeutics were investigated in combination with the FDA-approved drug hydroxychloroquine (HCQ). We demonstrate that HCQ-induced lysosome destabilization and could significantly increase nanoparticle internalization, doxorubicin release, and cytotoxicity. Altogether, these data demonstrate that, from the delivery standpoint in vitro, the internalization of EMNVs and EVs and their payload release were slightly different and both nanotherapeutics had comparable cytotoxic performance. However, the synthesis of EMNVs was significantly faster and cost-effective. In addition, we highlight the benefits of combining biological nanoparticles with the lysosome-destabilizing agent HCQ that increased both the internalization and the cytotoxic properties of the particles.

16.
Materials (Basel) ; 16(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36769967

RESUMEN

An approach to increase the efficiency of europium-based OLEDs was proposed through the formation of a mixed-ligand complex. The design of a series of europium complexes, together with an optimization of the solution deposition, including the host selection, as well as the variation of the solvent and deposition parameters, resulted in a noticeable increase in OLED luminance. As a result, the maximum luminance of the Eu-based OLED reached up to 700 cd/m2, which is one of the highest values for an Eu-based solution-processed OLED. Finally, its stability was investigated.

17.
ACS Nano ; 17(5): 4445-4452, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36848179

RESUMEN

Halide perovskite nano- and microlasers have become a very convenient tool for many applications from sensing to reconfigurable optical chips. Indeed, they exhibit outstanding emission robustness to crystalline defects due to so-called "defect tolerance" allowing for their simple chemical synthesis and further integration with various photonic designs. Here we demonstrate that such robust microlasers can be combined with another class of resilient photonic components, namely, with topological metasurfaces supporting topological guided boundary modes. We show that this approach allows to outcouple and deliver the generated coherent light over tens of microns despite the presence of defects of different nature in the structure: sharp corners in the waveguide, random location of the microlaser, and defects in the microlaser caused by mechanical pressure applied during its transfer to the metasurface. As a result, the developed platform provides a strategy to attain robust integrated lasing-waveguiding designs resilient to a broad range of structural imperfections, both for electrons in a laser and for pseudo-spin-polarized photons in a waveguide.

18.
ACS Nano ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36594418

RESUMEN

Detection of hazardous volatile organic and inorganic species is a crucial task for addressing human safety in the chemical industry. Among these species, there are hydrogen halides (HX, X = Cl, Br, I) vastly exploited in numerous technological processes. Therefore, the development of a cost-effective, highly sensitive detector selective to any HX gas is of particular interest. Herein, we demonstrate the optical detection of hydrogen chloride gas with solution-processed halide perovskite nanowire lasers grown on a nanostructured alumina substrate. An anion exchange reaction between a CsPbBr3 nanowire and vaporized HCl molecules results in the formation of a structure consisting of a bromide core and thin mixed-halide CsPb(Cl,Br)3 shell. The shell has a lower refractive index than the core does. Therefore, the formation and further expansion of the shell reduce the field confinement for experimentally observed laser modes and provokes an increase in their frequency. This phenomenon is confirmed by the coherency of the data derived from XPS spectroscopy, EDX analysis, in situ XRD experiments, HRTEM images, and fluorescent microspectroscopy, as well as numerical modeling for Cl- ion diffusion and the shell-thickness-dependent spectral position of eigenmodes in a core-shell perovskite nanowire. The revealed optical response allows the detection of HCl molecules in the 5-500 ppm range. The observed spectral tunability of the perovskite nanowire lasers can be employed not only for sensing but also for their precise spectral tuning.

19.
J Synchrotron Radiat ; 30(Pt 1): 208-216, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601939

RESUMEN

The application of fluorescent crystal media in wide-range X-ray detectors provides an opportunity to directly image the spatial distribution of ultra-intense X-ray beams including investigation of the focal spot of free-electron lasers. Here the capabilities of the micro- and nano-focusing X-ray refractive optics available at the High Energy Density instrument of the European XFEL are reported, as measured in situ by means of a LiF fluorescent detector placed into and around the beam caustic. The intensity distribution of the beam focused down to several hundred nanometers was imaged at 9 keV photon energy. A deviation from the parabolic surface in a stack of nanofocusing Be compound refractive lenses (CRLs) was found to affect the resulting intensity distribution within the beam. Comparison of experimental patterns in the far field with patterns calculated for different CRL lens imperfections allowed the overall inhomogeneity in the CRL stack to be estimated. The precise determination of the focal spot size and shape on a sub-micrometer level is essential for a number of high energy density studies requiring either a pin-size backlighting spot or extreme intensities for X-ray heating.

20.
Sci Transl Med ; 15(677): eabq6885, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599003

RESUMEN

Facilitating axon regeneration in the injured central nervous system remains a challenging task. RAF-MAP2K signaling plays a key role in axon elongation during nervous system development. Here, we show that conditional expression of a constitutively kinase-activated BRAF in mature corticospinal neurons elicited the expression of a set of transcription factors previously implicated in the regeneration of zebrafish retinal ganglion cell axons and promoted regeneration and sprouting of corticospinal tract (CST) axons after spinal cord injury in mice. Newly sprouting axon collaterals formed synaptic connections with spinal interneurons, resulting in improved recovery of motor function. Noninvasive suprathreshold high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) activated the BRAF canonical downstream effectors MAP2K1/2 and modulated the expression of a set of regeneration-related transcription factors in a pattern consistent with that induced by BRAF activation. HF-rTMS enabled CST axon regeneration and sprouting, which was abolished in MAP2K1/2 conditional null mice. These data collectively demonstrate a central role of MAP2K signaling in augmenting the growth capacity of mature corticospinal neurons and suggest that HF-rTMS might have potential for treating spinal cord injury by modulating MAP2K signaling.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Animales , Ratones , Axones/fisiología , Ingeniería Genética , Regeneración Nerviosa/fisiología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Tractos Piramidales/metabolismo , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Estimulación Magnética Transcraneal , Factores de Transcripción/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA