Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tissue Cell ; 89: 102442, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38908224

RESUMEN

Diabetic wounds require a multifactorial approach because several factors are involved in its occurrence. Herein we investigated whether transplantation of hyaluronic acid (HA) in combination with menstrual blood derived stem cells (MenSCs) could promote healing in diabetic rats. Thirty days after induction of diabetes, sixty animals were randomly planned into four equal groups: the untreated group, HA group, MenSC group, and HA+MenSC group. Sampling was done for histological, molecular, and tensiometrical assessments. Our results indicated that the wound contraction rate, volumes of new epidermis and dermis, collagen density, as well as tensiometrical parameter were considerably increased in the treatment groups compared to the untreated group and these changes were more obvious in the HA+MenSC ones. In addition, the expression levels of TGF-ß and VEGF genes were significantly upregulated in treatment groups in comparison with the untreated group and were greater in the HA+MenSC group. This is while expression levels of TNF-α and IL-1ß genes were more considerably downregulated in the HA+MenSC group than the other groups. We concluded that the combined use of HA and MenSCs has more effects on diabetic wound healing.

3.
Reprod Sci ; 31(7): 1958-1972, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38267808

RESUMEN

The effective combination of semen cryopreservation and artificial insemination has a positive effect on the conservation of germplasm resources, production and breeding, etc. However, during the process of semen cryopreservation, the sperm cells are very susceptible to different degrees of physical, chemical, and oxidative stress damage. Oxidative damage is the most important factor that reduces semen quality, which is affected by factors such as dilution equilibrium, change of osmotic pressure, cold shock, and enzyme action during the freezing-thawing process, which results in the aggregation of a large amount of reactive oxygen species (ROS) in sperm cells and affects the quality of semen after thawing. Therefore, the method of adding antioxidants to semen cryoprotective diluent is usually used to improve the effect of semen cryopreservation. The aim of this experiment was to investigate the effects of adding five antioxidants (GLP, Mito Q, NAC, SLS, and SDS) to semen cryoprotection diluent on the cryopreservation effect of semen from Saanen dairy goats. The optimal preservation concentrations were screened by detecting sperm viability, plasma membrane integrity, antioxidant capacity, and acrosomal enzyme activities after thawing, and the experimental results were as follows: the optimal concentrations of GLP, Mito Q, NAC, SLS, and SDS added to semen cryopreservation diluent at different concentrations were 0.8 mg/mL, 150 nmol/L, 0.6 mg/mL, 0.15 mg/ mL, 0.6 mg/mL, and 0.15 mg/mL. The optimal concentrations of the five antioxidants were added to the diluent and analyzed after 1 week of cryopreservation, and it was found that sperm viability, plasma membrane integrity, and mitochondrial activity were significantly enhanced after thawing compared with the control group (P < 0.05), and their antioxidant capacity was significantly enhanced (P < 0.05). Therefore, the addition of the above five antioxidants to goat sperm cryodilution solution had a better enhancement of sperm cryopreservation. This study provides a useful reference for exploring the improvement of goat semen cryoprotection effect.


Asunto(s)
Antioxidantes , Criopreservación , Crioprotectores , Cabras , Preservación de Semen , Animales , Masculino , Criopreservación/métodos , Criopreservación/veterinaria , Antioxidantes/farmacología , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Crioprotectores/farmacología , Espermatozoides/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Semen/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Análisis de Semen , Membrana Celular/efectos de los fármacos
4.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067495

RESUMEN

Increasing antimicrobial resistance to the action of existing antibiotics has prompted researchers to identify new natural molecules with antimicrobial potential. In this study, a green system was developed for biosynthesizing gold nanoparticles (BAuNPs) using sage (Salvia officinalis L.) leaf extract bioconjugated with non-toxic, eco-friendly, and biodegradable chitosan, forming chitosan/gold bioconjugates (Chi/BAuNPs). Characterization of the BAuNPs and Chi/BAuNPs conjugates takes place using transmission electron microscopy (TEM), X-ray spectra, Fourier transform infrared (FT-IR) spectroscopy, and zeta potential (Z-potential). The chemical composition of S. officinalis extract was evaluated via gas chromatography/mass spectrometry (GC/MS). This study evaluated the antioxidant and antimicrobial activities of human pathogenic multidrug-resistant (MDR) and multisensitive (MS) bacterial isolates using the agar diffusion method. Chi/BAuNPs showed inhibition of the MDR strains more effectively than BAuNPs alone as compared with a positive standard antibiotic. The cytotoxicity assay revealed that the human breast adenocarcinoma cancer cells (MCF7) were more sensitive toward the toxicity of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs composites compared to non-malignant human fibroblast cells (HFs). The study shows that BAuNPs and Chi/BAuNPs, combined with 5-FU NPs, can effectively treat cancer at concentrations where the free chemical drug (5-Fu) is ineffective, with a noted reduction in the required dosage for noticeable antitumor action.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Quitosano , Nanopartículas del Metal , Salvia officinalis , Humanos , Oro/química , Quitosano/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Fluorouracilo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tecnología Química Verde/métodos
5.
Res Vet Sci ; 152: 569-578, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36191510

RESUMEN

This study aims to explore the functional role of Myoz2 in myoblast differentiation, and elucidate the potential factors interact with Myoz2 in promoter transcriptional regulation. The temporal-spatial expression results showed that the bovine Myoz2 gene was highest expressed in longissimus dorsi, and in individual growth stages and myoblast differentiation stages. Knockdown of Myoz2 inhibited the differentiation of myoblast, and negative effect of MyoD, MyoG, MyH and MEF2A expression on mRNA levels. Subsequently, the promoter region of bovine Myoz2 gene with 1.7 Kb sequence was extracted, and then it was set as eight series of deleted fragments, which were ligated into pGL3-basic to detect core promoter regions of Myoz2 gene in myoblasts and myotubes. Transcription factors MyoD and MyoG were identified as important cis-acting elements in the core promoter region (-159/+1). Also, it was highly conserved in different species based on dual-luciferase analysis and multiple sequence alignment analysis, respectively. Furthermore, a chromatin immunoprecipitation (ChIP) analysis combined with site-directed mutation and siRNA interference and overexpression confirmed that the combination of MyoD and MyoG occurred in region -159/+1, and played an important role in the regulation of bovine Myoz2 gene. These findings explored the regulatory network mechanism of Myoz2 gene during the development of bovine skeletal muscle.


Asunto(s)
Proteína MioD , Mioblastos , Bovinos , Animales , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/fisiología , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Desarrollo de Músculos/genética
6.
Vaccines (Basel) ; 10(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36016167

RESUMEN

The gold-standard approach for diagnosing and confirming Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) infection is reverse transcription-polymerase chain reaction (RT-PCR). This method, however, is inefficient in detecting previous or dormant viral infections. The presence of antigen-specific antibodies is the fingerprint and cardinal sign for diagnosis and determination of exposure to infectious agents including Corona virus disease-2019 (COVID-19). This cross-sectional study examined the presence of SARS-CoV-2 spike-specific immunoglobulin G (IgG) among asymptomatic blood donors in Makkah region. A total of 4368 asymptomatic blood donors were enrolled. They were screened for spike-specific IgG using ELISA and COVID-19 RNA by real-time PCR. COVID-19 IgG was detected among 2248 subjects (51.5%) while COVID-19-RNA was detected among 473 (10.8%) subjects. The IgG frequency was significantly higher among males and non-Saudi residents (p < 0.001 each) with no significant variation in IgG positivity among blood donors with different blood groups. In addition, COVID-19 RNA frequency was significantly higher among donors below 40-years old (p = 0.047, χ2 = 3.95), and non-Saudi residents (p = 0.001, χ2 = 304.5). The COVID-19 IgG levels were significantly higher among the RNA-positive donors (p = 001), and non-Saudi residents (p = 0.041), with no variations with age or blood group (p > 0.05). This study reveals a very high prevalence of COVID-19 IgG and RNA among asymptomatic blood donors in Makkah, Saudi Arabia indicating a high exposure rate of the general population to COVID-19; particularly foreign residents. It sheds light on the spread on COVID-19 among apparently healthy individuals at the beginning of the pandemic and could help in designing various control measures to minimize viral spread.

7.
Front Microbiol ; 13: 1076675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687606

RESUMEN

Introduction: Black Tibetan sheep is one of the primitive sheep breeds in China that is famous for its great eating quality and nutrient value but with little attention to the relationship between feeding regimes and rumen metabolome along with its impact on the muscle metabolism and meat quality. Methods: This study applies metabolomics-based analyses of muscles and 16S rDNA-based sequencing of rumen fluid to examine how feeding regimes influence the composition of rumen microbiota, muscle metabolism and ultimately the quality of meat from Black Tibetan sheep. Twenty-seven rams were randomly assigned to either indoor feeding conditions (SG, n = 9), pasture grazing with indoor feeding conditions (BG, n = 9) or pasture grazing conditions (CG, n = 9) for 120 days. Results: The results showed that, compared with BG and CG, SG improved the quality of Black Tibetan sheep mutton by preventing a decline in pH and increasing fat deposition to enhance the color, tenderness and water holding capacity (WHC) of the Longissimus lumborum (LL). Metabolomics and correlation analyses further indicated that the feeding regimes primarily altered amino acid, lipid and carbohydrate metabolism in muscles, thereby influencing the amino acid (AA) and fatty acid (FA) levels as well as the color, tenderness and WHC of the LL. Furthermore, SG increased the abundance of Christensenellaceae R-7 group, [Eubacterium] coprostanoligenes group, Methanobrevibacter, Ruminococcus 2 and Quinella, decreased the abundance of Lactobacillus, Prevotella 1 and Rikenellaceae RC9 gut group, and showed a tendency to decrease the abundance of Succinivibrio and Selenomonas 1. Interestingly, all of these microorganisms participated in the deposition of AAs and FAs and modified the levels of different metabolites involved in the regulation of meat quality (maltotriose, pyruvate, L-ascorbic acid, chenodeoxycholate, D-glucose 6-phosphate, glutathione, etc.). Discussion: Overall, the results suggest that feeding Black Tibetan sheep indoors with composite forage diet was beneficial to improve the mouthfeel of meat, its color and its nutritional value by altering the abundance of rumen bacteria which influenced muscle metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...