Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Plant Res ; 137(2): 255-264, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38112982

RESUMEN

The kinetic properties of Rubisco, a key enzyme for photosynthesis, have been examined in numerous plant species. However, this information on some plant groups, such as ferns, is scarce. This study examined Rubisco carboxylase activity and leaf Rubisco levels in seven ferns, including four Equisetum plants (E. arvense, E. hyemale, E. praealtum, and E. variegatum), considered living fossils. The turnover rates of Rubisco carboxylation (kcatc) in E. praealtum and E. hyemale were comparable to those in the C4 plants maize (Zea mays) and sorghum (Sorghum bicolor), whose kcatc values are high. Rubisco CO2 affinity, estimated from the percentage of Rubisco carboxylase activity under CO2 unsaturated conditions in kcatc in these Equisetum plants, was low and also comparable to that in maize and sorghum. In contrast, kcatc and CO2 affinities of Rubisco in other ferns, including E. arvense and E. variegatum were comparable with those in C3 plants. The N allocation to Rubisco in the ferns examined was comparable to that in the C3 plants. These results indicate that E. praealtum and E. hyemale have abundant Rubisco with high kcatc and low CO2 affinity, whereas the carboxylase activity and abundance of Rubisco in other ferns were similar to those in C3 plants. Herein, the Rubisco properties of E. praealtum and E. hyemale were discussed regarding their evolution and physiological implications.


Asunto(s)
Equisetum , Ribulosa-Bifosfato Carboxilasa , Dióxido de Carbono , Equisetum/metabolismo , Fotosíntesis/fisiología , Plantas/metabolismo , Zea mays/metabolismo
2.
Plant Cell Physiol ; 64(1): 55-63, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36208302

RESUMEN

In mature leaves acclimated to low N levels and in senescent leaves, photosystems II and I (PSII and PSI, respectively) show typical responses to excess light energy. As CO2 assimilation is not transiently suppressed in these situations, the behavior of PSII and PSI is likely caused by endogenous biochemical changes in photosynthesis. In this study, this subject was studied in rice (Oryza sativa L.). Analysis was performed on mature and senescent leaves of control and N-deficient plants. Total leaf-N, Rubisco and chlorophyll (Chl) levels and their ratios were determined as biochemical parameters of photosynthesis. Total leaf-N, Rubisco and Chl levels decreased in the mature leaves of N-deficient plants and senescent leaves. The percentage of Rubisco-N in the total leaf-N decreased in these leaves, whereas that of Chl-N tended to remain almost constant in mature leaves but increased in senescent leaves. Changes in PSII and PSI parameters were best accounted for by the Rubisco-N percentage, strongly suggesting that the behavior of PSII and PSI is modulated depending on changes in N partitioning to Rubisco in mature leaves acclimated to low N levels and in senescent leaves. It is likely that a decrease in N partitioning to Rubisco leads to a decrease in Rubisco capacity relative to other photosynthetic capacities that inevitably generate excess light energy and that the operation of PSII and PSI is modulated in such situations.


Asunto(s)
Oryza , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Oryza/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Fotosíntesis/fisiología , Clorofila , Hojas de la Planta/metabolismo
3.
Breed Sci ; 72(2): 124-131, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36275939

RESUMEN

The development of crop varieties with high nitrogen-use efficiency (NUE) is thought to be important in achieving sustainable cereal crop production. The high yield large-grain rice cultivar Oryza sativa L. 'Akita 63' (temperate japonica) has high physiological NUE (PNUE) for grain yield (GY). Our previous study revealed that a large-grain allele of GS3 is present in 'Akita 63'. Here, we verified the influence of GS3 on the yield properties and PNUE for GY in 'Akita 63'. The frequency distribution of brown rice length in F2 crosses of 'Iwate 75' and 'Akita 63' showed a continuous distribution that could be explained by GS3. A near-isogenic line was developed to substitute the GS3 segment of 'Koshihikari', which harbours a normal-sized grain allele, in the genetic background of 'Akita 63' and the line was designated as Akita63NILGS3-Koshihikari. Compared with Akita63NILGS3-Koshihikari, 'Akita 63' exhibited a significantly increased grain length, single brown grain weight and GY, although no significant differences were observed in the nitrogen content and above-ground biomass per unit of cultivated area. These results indicate that the GS3 large-grain allele is a contributing factor to high PNUE for GY in 'Akita 63'. These findings will facilitate the development of nitrogen-efficient rice varieties.

4.
Plant Sci ; 325: 111475, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36167261

RESUMEN

The success of the dwarf breeding of rice, called the Green Revolution in Asia, resulted from increased source and sink capacities depending on significant inputs of N fertilizer. Although N fertilization is essential for increasing cereal production, large inputs of N application have significantly impacted the environment. Transgenic rice overproducing Rubisco has demonstrated increased yields with improved N use efficiency for increasing biomass production under high N fertilization in a paddy field. A large grain cultivar, Akita 63, had a high yield by enlarging the sink capacity without photosynthesis improvement. However, source capacity strongly limited the yield potential under high N fertilization. Enhancing photosynthesis is important for further increasing the yield of current high-yielding cultivars. Developing innovative rice plants with both high photosynthesis and large sink capacity is essential.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Fotosíntesis , Grano Comestible , Fertilizantes
5.
Plant Cell Physiol ; 63(10): 1500-1509, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35921240

RESUMEN

We recently suggested that chloroplast triosephosphate isomerase (cpTPI) has moderate control over the rate of CO2 assimilation (A) at elevated CO2 levels via the capacity for triose phosphate utilization (TPU) in rice (Oryza sativa L.) from its antisense-suppression study. In the present study, the effects of cpTPI overexpression on photosynthesis were examined in transgenic rice plants overexpressing the gene encoding cpTPI. The amounts of cpTPI protein in the two lines of transgenic plants were 4.8- and 12.1-folds higher than in wild-type plants, respectively. The magnitude of the increase approximately corresponded to the increase in transcript levels of cpTPI. A at CO2 levels of 100 and 120 Pa increased by 6-9% in the transgenic plants, whereas those at ambient and low CO2 levels were scarcely affected. Similar increases were observed for TPU capacity estimated from the CO2 response curves of A. These results indicate that the overexpression of cpTPI marginally improved photosynthesis at elevated CO2 levels via improvement in TPU capacity in rice. However, biomass production at a CO2 level of 120 Pa did not increase in transgenic plants, suggesting that the improvement in photosynthesis by cpTPI overexpression was not sufficient to improve biomass production in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Dióxido de Carbono/metabolismo , Triosa-Fosfato Isomerasa/genética , Triosa-Fosfato Isomerasa/metabolismo , Fotosíntesis , Cloroplastos/metabolismo , Plantas Modificadas Genéticamente/genética
6.
Plant Direct ; 6(7): e417, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35865075

RESUMEN

The Green Revolution allowed a large amount of nitrogen (N) fertilization to increase crop yield but has led to severe environmental pollution. Therefore, increasing the crop grain yield must be achieved without such considerable input of N fertilization. A large-grain japonica rice cultivar, Akita 63, significantly increased grain yield and improved N-use efficiency (NUE) for yield per amount of N absorbed by plants. This study found that the nonsense mutated GS3 gene, the gs3 allele of Akita 63, has a superior yield production with enlarged grain size. The gs3 allele increased the yield with improvements in harvest index and NUE for yields per plant N content by analyzing the near-isogenic line of rice plants with a large grain (LG-Notohikari), which was developed by introducing the gs3 allele of Akita 63 into normal-grain japonica cultivar, Notohikari. Thus, the gs3 allele would be promising for further yield increase without additional large input of N fertilization in non-gs3-allele rice varieties.

7.
Photosynth Res ; 153(1-2): 83-91, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35635654

RESUMEN

As chloroplast phosphoglycerate kinase (cpPGK) is one of the enzymes which has the highest capacity among the Calvin-Benson cycle enzymes, it has not been regarded as a determinant for photosynthetic capacity. However, it was reported that the rate of CO2 assimilation decreased under high irradiance and normal [CO2] levels in the Arabidopsis cpPGK-knockdown mutant, implying that cpPGK has a control over photosynthetic capacity at a normal [CO2] level. In the present study, the contribution of cpPGK to photosynthetic capacity was evaluated in transgenic rice plants with decreased amounts of cpPGK protein under high irradiance and various [CO2] levels. The gene encoding cpPGK was suppressed using RNA interference techniques. Two lines of transgenic plants, Pi3 and Pi5, in which the amount of cpPGK protein decreased to 21% and 76% of that in wild-type plants, respectively, were obtained. However, there was no substantial difference in the rates of CO2 assimilation between wild-type and transgenic plants. The rates of CO2 assimilation decreased only slightly at elevated [CO2] levels in the transgenic line Pi3 and did not differ between wild-type plants and the transgenic line Pi5, irrespective of [CO2] level. These results clearly indicate that cpPGK does not have a strong control over photosynthetic capacity at various [CO2] levels in rice.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Fosfoglicerato Quinasa/farmacología , Fotosíntesis , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
8.
J Exp Bot ; 73(8): 2589-2600, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35134146

RESUMEN

Fragility of photosystem I has been observed in transgenic rice plants that overproduce Rubisco activase (RCA). In this study, we examined the effects of RCA overproduction on the sensitivity of PSI to photoinhibition in three lines of plants overexpressing RCA (RCA-ox). In all the RCA-ox plants the quantum yield of PSI [Y(I)] decreased whilst in contrast the quantum yield of acceptor-side limitation of PSI [Y(NA)] increased, especially under low light conditions. In the transgenic line with the highest RCA content (RCA-ox 1), the quantum yield of PSII [Y(II)] and CO2 assimilation also decreased under low light. When leaves were exposed to high light (2000 µmol photon m-2 s-1) for 60 min, the maximal activity of PSI (Pm) drastically decreased in RCA-ox 1. These results suggested that overproduction of RCA disturbs PSI electron transport control, thus increasing the susceptibility of PSI to photoinhibition. When flavodiiron protein (FLV), which functions as a large electron sink downstream of PSI, was expressed in the RCA-ox 1 background (RCA-FLV), PSI and PSII parameters, and CO2 assimilation were recovered to wild-type levels. Thus, expression of FLV restored the robustness of PSI in RCA-ox plants.


Asunto(s)
Oryza , Ribulosa-Bifosfato Carboxilasa , Dióxido de Carbono/metabolismo , Transporte de Electrón , Oryza/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Activador de Tejido Plasminógeno/metabolismo
9.
Rice (N Y) ; 15(1): 10, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35138458

RESUMEN

BACKGROUND: Improvement in photosynthesis is one of the most promising approaches to increase grain yields. Transgenic rice plants overproducing Rubisco by 30% (RBCS-sense rice plants) showed up to 28% increase in grain yields under sufficient nitrogen (N) fertilization using an isolated experimental paddy field (Yoon et al. in Nat Food 1:134-139, 2020). The plant N contents above-ground sections and Rubisco contents of the flag leaves were higher in the RBCS-sense plants than in the wild-type rice plants during the ripening period, which may be reasons for the increased yields. However, some imprecise points were left in the previous research, such as contributions of photosynthesis of leaves below the flag leaves to the yield, and maintenance duration of high photosynthesis of RBCS-sense rice plants during ripening periods. RESULT: In this research, the photosynthetic capacity and canopy architecture were analyzed to explore factors for the increased yields of RBCS-sense rice plants. It was found that N had already been preferentially distributed into the flag leaves at the early ripening stage, contributing to maintaining higher Rubisco content levels in the enlarged flag leaves and extending the lifespan of the flag leaves of RBCS-sense rice plants throughout ripening periods under sufficient N fertilization. The higher amounts of Rubisco also improved the photosynthetic activity in the flag leaves throughout the ripening period. Although the enlarged flag leaves of the RBCS-sense rice plants occupied large spatial areas of the uppermost layer in the canopy, no significant prevention of light penetration to leaves below the flag leaves was observed. Additionally, since the CO2 assimilation rates of lower leaves between wild-type and RBCS-sense rice plants were the same at the early ripening stage, the lower leaves did not contribute to an increase in yields of the RBCS-sense rice plants. CONCLUSION: We concluded that improvements in the photosynthetic capacity by higher leaf N and Rubisco contents, enlarged leaf area and extended lifespan of flag leaves led to an increase in grain yields of RBCS-sense rice plants grown under sufficient N fertilization.

10.
Plant Physiol ; 188(3): 1550-1562, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893891

RESUMEN

The availability of inorganic phosphate (Pi) for ATP synthesis is thought to limit photosynthesis at elevated [CO2] when Pi regeneration via sucrose or starch synthesis is limited. We report here another mechanism for the occurrence of Pi-limited photosynthesis caused by insufficient capacity of chloroplast triose phosphate isomerase (cpTPI). In cpTPI-antisense transgenic rice (Oryza sativa) plants with 55%-86% reductions in cpTPI content, CO2 sensitivity of the rate of CO2 assimilation (A) decreased and even reversed at elevated [CO2]. The pool sizes of the Calvin-Benson cycle metabolites from pentose phosphates to 3-phosphoglycerate increased at elevated [CO2], whereas those of ATP decreased. These phenomena are similar to the typical symptoms of Pi-limited photosynthesis, suggesting sufficient capacity of cpTPI is necessary to prevent the occurrence of Pi-limited photosynthesis and that cpTPI content moderately affects photosynthetic capacity at elevated [CO2]. As there tended to be slight variations in the amounts of total leaf-N depending on the genotypes, relationships between A and the amounts of cpTPI were examined after these parameters were expressed per unit amount of total leaf-N (A/N and cpTPI/N, respectively). A/N at elevated [CO2] decreased linearly as cpTPI/N decreased before A/N sharply decreased, owing to further decreases in cpTPI/N. Within this linear range, decreases in cpTPI/N by 80% led to decreases up to 27% in A/N at elevated [CO2]. Thus, cpTPI function is crucial for photosynthesis at elevated [CO2].


Asunto(s)
Cloroplastos/metabolismo , Inhibidores Enzimáticos/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfatos/metabolismo , Fotosíntesis/efectos de los fármacos , Triosa-Fosfato Isomerasa/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantas Modificadas Genéticamente/metabolismo
11.
Sci Rep ; 11(1): 20922, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686733

RESUMEN

Despite the essentiality of Mn in terrestrial plants, its excessive accumulation in plant tissues can cause growth defects, known as Mn toxicity. Mn toxicity can be classified into apoplastic and symplastic types depending on its onset. Symplastic Mn toxicity is hypothesised to be more critical for growth defects. However, details of the relationship between growth defects and symplastic Mn toxicity remain elusive. In this study, we aimed to elucidate the molecular mechanisms underlying symplastic Mn toxicity in rice plants. We found that under excess Mn conditions, CO2 assimilation was inhibited by stomatal closure, and both carbon anabolic and catabolic activities were decreased. In addition to stomatal dysfunction, stomatal and leaf anatomical development were also altered by excess Mn accumulation. Furthermore, indole acetic acid (IAA) concentration was decreased, and auxin-responsive gene expression analyses showed IAA-deficient symptoms in leaves due to excess Mn accumulation. These results suggest that excessive Mn accumulation causes IAA deficiency, and low IAA concentrations suppress plant growth by suppressing stomatal opening and leaf anatomical development for efficient CO2 assimilation in leaves.


Asunto(s)
Dióxido de Carbono/metabolismo , Homeostasis/fisiología , Ácidos Indolacéticos/metabolismo , Intoxicación por Manganeso/metabolismo , Manganeso/metabolismo , Oryza/metabolismo , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología
12.
Plant Cell Physiol ; 62(9): 1372-1386, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34086965

RESUMEN

Chloroplasts, and plastids in general, contain abundant protein pools that can be major sources of carbon and nitrogen for recycling. We have previously shown that chloroplasts are partially and sequentially degraded by piecemeal autophagy via the Rubisco-containing body. This degradation occurs during plant development and in response to the environment; however, little is known about the fundamental underlying mechanisms. To discover the mechanisms of piecemeal autophagy of chloroplasts/plastids, we conducted a forward-genetics screen following ethyl-methanesulfonate mutagenesis of an Arabidopsis (Arabidopsis thaliana) transgenic line expressing chloroplast-targeted green fluorescent protein (CT-GFP). This screen allowed us to isolate a mutant, gfs9-5, which hyperaccumulated cytoplasmic bodies labeled with CT-GFP of up to 1.0 µm in diameter in the young seedlings. We termed these structures plastid bodies (PBs). The mutant was defective in a membrane-trafficking factor, green fluorescent seed 9 (GFS9), and PB accumulation in gfs9-5 was promoted by darkness and nutrient deficiency. Transmission electron microscopy indicated that gfs9-5 hyperaccumulated structures corresponding to autophagosomes and PBs. gfs9-5 hyperaccumulated membrane-bound endogenous ATG8 proteins, transgenic yellow fluorescent protein (YFP)-ATG8e proteins and autophagosome-like structures labeled with YFP-ATG8e. The YFP-ATG8e signal was associated with the surface of plastids and their protrusions in gfs9-5. Double mutants of gfs9 and autophagy-defective 5 did not accumulate PBs. In gfs9-5, the YFP-ATG8e proteins and PBs could be delivered to the vacuole and autophagic flux was increased. We discuss a possible connection between GFS9 and autophagy and propose a potential use of gfs9-5 as a new tool to study piecemeal plastid autophagy.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Autofagia/genética , Proteínas de la Membrana/genética , Mutación , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Plantones/genética , Plantones/fisiología
13.
Plant Cell Environ ; 44(7): 2308-2320, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33745135

RESUMEN

Global warming threatens food security by decreasing crop yields through damage to photosynthetic systems, especially Rubisco activation. We examined whether co-overexpression of Rubisco and Rubisco activase improves the photosynthetic and growth performance of rice under high temperatures. We grew three rice lines-the wild-type (WT), a Rubisco activase-overexpressing line (oxRCA) and a Rubisco- and Rubisco activase-co-overexpressing line (oxRCA-RBCS)-and analysed photosynthesis and biomass at 25 and 40°C. Compared with the WT, the Rubisco activase content was 153% higher in oxRCA and 138% higher in oxRCA-RBCS, and the Rubisco content was 27% lower in oxRCA and similar in oxRCA-RBCS. The CO2 assimilation rate (A) of WT was lower at 40°C than at 25°C, attributable to Rubisco deactivation by heat. On the other hand, that of oxRCA and oxRCA-RBCS was maintained at 40°C, resulting in higher A than WT. Notably, the dry weight of oxRCA-RBCS was 26% higher than that of WT at 40°C. These results show that increasing the Rubisco activase content without the reduction of Rubisco content could improve yield and sustainability in rice at high temperature.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Oryza/fisiología , Fotosíntesis/fisiología , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Biomasa , Clorofila/genética , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Ribulosa-Bifosfato Carboxilasa/genética , Termotolerancia , Zea mays/genética
14.
Plant Physiol ; 185(1): 108-119, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631807

RESUMEN

Rubisco limits C3 photosynthesis under some conditions and is therefore a potential target for improving photosynthetic efficiency. The overproduction of Rubisco is often accompanied by a decline in Rubisco activation, and the protein ratio of Rubisco activase (RCA) to Rubisco (RCA/Rubisco) greatly decreases in Rubisco-overproducing plants (RBCS-ox). Here, we produced transgenic rice (Oryza sativa) plants co-overproducing both Rubisco and RCA (RBCS-RCA-ox). Rubisco content in RBCS-RCA-ox plants increased by 23%-44%, and RCA/Rubisco levels were similar or higher than those of wild-type plants. However, although the activation state of Rubisco in RBCS-RCA-ox plants was enhanced, the rates of CO2 assimilation at 25°C in RBCS-RCA-ox plants did not differ from that of wild-type plants. Alternatively, at a moderately high temperature (optimal range of 32°C-36°C), the rates of CO2 assimilation in RBCS-ox and RBCS-RCA-ox plants were higher than in wild-type plants under conditions equal to or lower than current atmospheric CO2 levels. The activation state of Rubisco in RBCS-RCA-ox remained higher than that of RBCS-ox plants, and activated Rubisco content in RCA overproducing, RBCS-ox, RBCS-RCA-ox, and wild-type plants was highly correlated with the initial slope of CO2 assimilation against intercellular CO2 pressures (A:Ci) at 36°C. Thus, a simultaneous increase in Rubisco and RCA contents leads to enhanced photosynthesis within the optimal temperature range.


Asunto(s)
Aclimatación/fisiología , Dióxido de Carbono/metabolismo , Calor , Oryza/metabolismo , Fotosíntesis/fisiología , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Aclimatación/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oryza/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Ribulosa-Bifosfato Carboxilasa/genética
15.
Plant Cell Physiol ; 62(7): 1121-1130, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33576433

RESUMEN

Although N levels affect leaf photosynthetic capacity, the effects of N levels on the photochemistry of photosystems II and I (PSII and PSI, respectively) are not well-understood. In the present study, we examined this aspect in rice (Oryza sativa L. 'Hitomebore') plants grown under three different N levels at normal or high temperatures that can occur during rice culture and do not severely suppress photosynthesis. At both growth temperatures, the quantum efficiency of PSII [Y(II)] and the fraction of the primary quinone electron acceptor in its oxidized state were positively correlated with the amount of total leaf-N, whereas the quantum yields of non-photochemical quenching and donor-side limitation of PSI [Y(ND)] were negatively correlated with the amount of total leaf-N. These changes in PSII and PSI parameters were strongly correlated with each other. Growth temperatures scarcely affected these relationships. These results suggest that the photochemistry of PSII and PSI is coordinately regulated primarily depending on the amount of total leaf-N. When excess light energy occurs in low N-acclimated plants, oxidation of the reaction center chlorophyll of PSI is thought to be stimulated to protect PSI from excess light energy. It is also suggested that PSII and PSI normally operate at high temperature used in the present study. In addition, as the relationships between Y(II) and Y(ND) were found to be almost identical to those observed in osmotically stressed rice plants, common regulation is thought to be operative when excess light energy occurs due to different causes.


Asunto(s)
Nitrógeno/metabolismo , Oryza/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Frío , Calor , Oryza/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
16.
Plant Cell Physiol ; 62(1): 156-165, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33289530

RESUMEN

Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) limits the regeneration of ribulose 1,5-bisphosphate (RuBP) in the Calvin-Benson cycle. However, it does not always limit the rate of CO2 assimilation. In the present study, the effects of overproduction of GAPDH on the rate of CO2 assimilation under elevated [CO2] conditions, where the capacity for RuBP regeneration limits photosynthesis, were examined in transgenic rice (Oryza sativa). GAPDH activity was increased to 3.2- and 4.5-fold of the wild-type levels by co-overexpression of the GAPDH genes, GAPA and GAPB, respectively. In the transgenic rice plants, the rate of CO2 assimilation under elevated [CO2] conditions increased by approximately 10%, whereas that under normal and low [CO2] conditions was not affected. These results indicate that overproduction of GAPDH is effective in improving photosynthesis under elevated [CO2] conditions, although its magnitude is relatively small. By contrast, biomass production of the transgenic rice plants was not greater than that of wild-type plants under elevated [CO2] conditions, although starch content tended to increase marginally.


Asunto(s)
Cloroplastos/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Oryza/metabolismo , Fotosíntesis , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Citocromos f/metabolismo , Regulación de la Expresión Génica de las Plantas , Gliceraldehído-3-Fosfato Deshidrogenasas/fisiología , Oryza/enzimología , Oryza/fisiología , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
17.
Plants (Basel) ; 9(12)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322777

RESUMEN

Upon exposure to environmental stress, the primary electron donor in photosystem I (PSI), P700, is oxidized to suppress the production of reactive oxygen species that could oxidatively inactivate the function of PSI. The illumination of rice leaves with actinic light induces intrinsic fluctuations in the opening and closing of stomata, causing the net CO2 assimilation rate to fluctuate. We examined the effects of these intrinsic fluctuations on electron transport reactions. Under atmospheric O2 conditions (21 kPa), the effective quantum yield of photosystem II (PSII) (Y(II)) remained relatively high while the net CO2 assimilation rate fluctuated, which indicates the function of alternative electron flow. By contrast, under low O2 conditions (2 kPa), Y(II) fluctuated. These results suggest that photorespiration primarily drove the alternative electron flow. Photorespiration maintained the oxidation level of ferredoxin (Fd) throughout the fluctuation of the net CO2 assimilation rate. Moreover, the relative activity of photorespiration was correlated with both the oxidation level of P700 and the magnitude of the proton gradient across the thylakoid membrane in 21 kPa O2 conditions. These results show that photorespiration oxidized P700 by stimulating the proton gradient formation when CO2 assimilation was suppressed by stomatal closure.

18.
Front Plant Sci ; 11: 1121, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849689

RESUMEN

Photorespiration coupled with CO2 assimilation is thought to act as a defense system against photoinhibition caused by osmotic stress. In the present study, we examined whether such a mechanism is operative for the protection of photosystem I (PSI) in rice (Oryza sativa L.) including transgenic plants with decreased and increased Rubisco content (RBCS-antisense and RBCS-sense plants, respectively). All plants were hydroponically grown and moderate osmotic stress was imposed using hydroponic culture solutions containing poly(ethylene glycol) (PEG) at 16% or 20% (w/v) for 2 d. In wild-type plants, the rates of CO2 assimilation (A) were significantly decreased by the PEG treatment, whereas the photorespiration activity estimated from the rates of electron transport in photosystem II (PSII) and A were not affected. The maximal quantum efficiency of PSII (F v/F m) and the maximal activity of PSI (P m) were also not affected. In RBCS-antisense plants, A and the estimated photorespiration activity were considerably lower than those in wild-type plants in the presence or absence of the PEG treatment. P m and both F v/F m and P m decreased in the 16% PEG-treated and 20% PEG-treated RBCS-antisense plants, respectively. Thus, the decrease in Rubisco content led to the photoinhibition of PSI and PSII, indicating the importance of photorespiration coupled with CO2 assimilation for the protection of PSI from moderate PEG-induced osmotic stress. It was also shown that PSI was more sensitive to osmotic stress than PSII. In the PEG-treated wild-type and RBCS-antisense plants, osmotic-stress responses of the photosynthetic electron transport reactions upstream of PSI led to the oxidation of P700, which is thought to prevent PSI from over-reduction. Although such a defense system operated, it was not sufficient for the protection of PSI in RBCS-antisense plants. In addition, there were no large differences in the parameters measured between wild-type and RBCS-sense plants, as overproduction of Rubisco did not increase photorespiration activity.

19.
Sci Rep ; 10(1): 12231, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699370

RESUMEN

To increase the yield potential while limiting the environmental impact of N management practices is an important issue in rice cultivation. The large-grain rice cultivar Akita 63 showed higher N-use efficiency for grain production. To elucidate this, we analyzed yield characteristics of Akita 63 in comparison with those of a maternal cultivar, Oochikara with a large grain, a paternal cultivar, Akita 39 with a normal grain, and a Japanese leading cultivar, Akitakomachi. The yields of Akita 63 were 20% higher than those of Oochikara and Akita 39, and 50% higher than those of Akitakomachi for the same N application. Akita 63 showed superior N uptake capacity. Whereas a trade-off between single grain weight and grain number was found for Oochikara, Akita 63 did not show such a relationship. The success in Akita 63 breeding was due to overcoming such a trade-off. Akita 63 had the large-grain alleles of GS3 and qSW5. Thus, an enlargement of grain size can have a great impact on an increase in yield with improved N-use efficiency. However, an enlargement of sink capacity led to source limitation. Thus, both sink and source improvements are essential for a further increase in the yield of today's high-yielding cultivars.


Asunto(s)
Grano Comestible/genética , Oryza/genética , Alelos , Cruzamiento/métodos , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo/genética , Semillas/genética
20.
Plant J ; 103(2): 814-823, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32314445

RESUMEN

C4 plants can fix CO2 efficiently using CO2 -concentrating mechanisms (CCMs), but they require additional ATP. To supply the additional ATP, C4 plants operate at higher rates of cyclic electron transport around photosystem I (PSI), in which electrons are transferred from ferredoxin to plastoquinone. Recently, it has been reported that the NAD(P)H dehydrogenase-like complex (NDH) accumulated in the thylakoid membrane in leaves of C4 plants, making it a candidate for the additional synthesis of ATP used in the CCM. In addition, C4 plants have higher levels of PROTON GRADIENT REGULATION 5 (PGR5) expression, but it has been unknown how PGR5 functions in C4 photosynthesis. In this study, PGR5 was overexpressed in a C4 dicot, Flaveria bidentis. In PGR5-overproducing (OP) lines, PGR5 levels were 2.3- to 3.0-fold greater compared with wild-type plants. PGR5-like PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1), which cooperates with PGR5, increased with PGR5. A spectroscopic analysis indicated that in the PGR5-OP lines, the acceptor side limitation of PSI was reduced in response to a rapid increase in photon flux density. Although it did not affect CO2 assimilation, the overproduction of PGR5 contributed to an enhanced electron sink downstream of PSI.


Asunto(s)
Flaveria/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Transporte de Electrón , Regulación de la Expresión Génica de las Plantas , NADP/metabolismo , Oxidación-Reducción , Ribulosa-Bifosfato Carboxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA