Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Pharmacol Drug Dev ; 12(2): 159-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369799

RESUMEN

Pexidartinib is an oral small-molecule tyrosine kinase inhibitor that selectively targets colony-stimulating factor 1 receptor. Two phase 1 single-center trials were conducted in healthy subjects to determine the absorption, distribution, metabolism, and excretion of pexidartinib using radiolabeled drug and to assess the dose proportionality of pexidartinib following single oral doses. In the mass balance study, eight male subjects received a single oral dose of [14 C]-pexidartinib 400 mg with radioactivity assessed in plasma, urine, and feces samples taken at various timepoints postdose. In the dose-proportionality study, 18 subjects received single doses of pexidartinib 200, 400, and 600 mg using randomization sequences. Peak pexidartinib and total radioactivity were observed at 1.75-2.0 hours after the oral dose and then declined in a multiphasic manner. The overall mean recovery of administered radioactivity was 92.2% over 240 hours with 64.8% in the feces and 27.4% in the urine. Major components detected in plasma were pexidartinib and glucuronide (M5, ZAAD-1006a), with M5 and pexidartinib detected in urine and feces, respectively. A glucuronide of dealkylated form (M1) in the urine and multiple oxidized forms (M2, M3, and M4) in feces were detected. The dose-proportionality study found dose-proportional drug exposure between the 200- and 400-mg doses and slightly less than proportional exposure between the 400- and 600-mg doses. These results from these studies provide insight into pexidartinib disposition after oral administration and support the development of dosing guidance in subjects with renal or hepatic impairment or subjects taking cytochrome P450 3A and uridine disphosphate-glucuronosyl transferase inhibitors and inducers.


Asunto(s)
Antineoplásicos , Glucurónidos , Humanos , Masculino , Inhibidores de Proteínas Quinasas/farmacocinética , Aminopiridinas/farmacocinética
2.
Drug Metab Pharmacokinet ; 45: 100459, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716472

RESUMEN

Our previous study in rats demonstrated that the metabolic pathways of DS-8500a, a novel GPR119 agonist, include cleavage pathways: reductive cleavage of the oxadiazole ring in the liver and hydrolysis of the amide side chain. In the present study, in vivo metabolic profiling in humans and monkeys after the oral administration of two 14C-labeled compounds was performed to investigate species differences of the cleavage pathways. In monkeys, the oxadiazole ring-cleaved metabolites were mainly detected in feces, but not observed in bile, unlike in rats, suggesting that the reductive ring-opening metabolism occurs in the gastrointestinal tract. In vitro incubation with enterobacterial culture media demonstrated that the reductive cleavage of the oxadiazole ring in humans and monkeys was considerably faster than that in rats. The other cleavage metabolite (M20), produced via hydrolysis of the amide side chain, was detected as the major plasma metabolite in humans and monkeys, and its subsequent metabolite (M21) was excreted in feces, whereas M21 was not a major component in rats, indicating a notable species difference in the amide hydrolysis. In conclusion, this study comprehensively revealed the pronounced species difference of the cleavage pathways: reductive ring-opening by intestinal microflora and liver, and amide hydrolysis.


Asunto(s)
Benzamidas , Oxadiazoles , Administración Oral , Animales , Radioisótopos de Carbono , Ciclopropanos , Heces/química , Humanos , Macaca fascicularis/metabolismo , Oxadiazoles/metabolismo , Farmacocinética , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Especificidad de la Especie
3.
Xenobiotica ; 49(8): 961-969, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30124356

RESUMEN

A 1,2,4-oxadiazole ring-containing compound DS-8500a was developed as a novel G protein-coupled receptor 119 agonist. In vivo metabolic fates of [14C]DS-8500a differently radiolabeled in the benzene ring or benzamide side carbon in rats were investigated. Differences in mass balances were observed, primarily because after the oxadiazole ring-opening and subsequent ring-cleavage small-molecule metabolites containing the benzene side were excreted in the urine, while those containing the benzamide side were excreted in the bile. DS-8500a was detected at trace levels in urine and bile, demonstrating extensive metabolism prior to urinary/biliary excretion. At least 16 metabolite structures were proposed in plasma, urine, and bile samples from rats treated with [14C]DS-8500a. Formation of a ring-opened metabolite (reduced DS-8500a) in hepatocytes of humans, monkeys, and rats was confirmed; however, it was not affected by typical inhibitors of cytochrome P450s, aldehyde oxidases, or carboxylesterases in human hepatocytes. Extensive formation of the ring-opened metabolite was observed in human liver microsomes fortified with an NADPH-generating system under anaerobic conditions. These results suggest an in vivo unique reductive metabolism of DS-8500a is mediated by human non-cytochrome P450 enzymes.


Asunto(s)
Benzamidas/metabolismo , Ciclopropanos/metabolismo , Redes y Vías Metabólicas , Oxadiazoles/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Administración Oral , Anaerobiosis , Animales , Benzamidas/administración & dosificación , Benzamidas/sangre , Benzamidas/farmacocinética , Radioisótopos de Carbono/química , Ciclopropanos/administración & dosificación , Ciclopropanos/sangre , Ciclopropanos/farmacocinética , Humanos , Macaca fascicularis , Masculino , Oxadiazoles/administración & dosificación , Oxadiazoles/sangre , Oxadiazoles/farmacocinética , Oxidación-Reducción , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo
4.
Bioanalysis ; 4(3): 263-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22303830

RESUMEN

BACKGROUND: Drug-induced toxicity such as idiosyncratic drug toxicity is believed to be reduced when either reactive metabolite formation or exposure to a drug is minimized. The objective of the present study was therefore to clarify the relationship between the daily doses, the formation rates of reactive metabolite adduct with (35)S-glutathione (RM-GS) and the safety profiles of compounds. RESULTS: The RM-GS formation rates for 113 test compounds were determined by incubation with human liver microsomes, and the test compounds were classified into three categories of safe, warning and withdrawn/black box warning. A total of 23 out of 28 withdrawn/black box warning drugs showed both a RM-GS formation rate of over 1 pmol/30 min/mg protein and a dose of over 100 mg. CONCLUSION: These results suggest that when compounds are plotted in this region, the compounds would have a relatively high idiosyncratic drug toxicity potential.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Glutatión/química , Preparaciones Farmacéuticas/metabolismo , Diclofenaco/química , Diclofenaco/metabolismo , Diclofenaco/toxicidad , Esquema de Medicación , Glutatión/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Radioisótopos de Azufre/química , Ticlopidina/química , Ticlopidina/metabolismo , Ticlopidina/toxicidad
5.
Drug Metab Pharmacokinet ; 24(1): 100-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19252339

RESUMEN

The metabolic bioactivation of a drug to a reactive metabolite (RM) and its covalent binding to cellular macromolecules is believed to be involved in clinical adverse events, including idiosyncratic drug toxicities. Therefore, it is important to assess the potential of drug candidates to generate RMs and form drug-protein covalent adducts during lead optimization processes. In this study, the RM formation of some marketed drugs were quantitatively assessed by means of a sensitive and robust detection method that we have established using (35)S-glutathione ((35)S-GSH) as a trapping agent. Problematic drugs well-known to generate RMs exhibited a relatively high rate of (35)S-GS-adducts to RM (RM-GS) formation, which contrasted with safe drugs. For practical use in lead optimization processes, a series of new chemical entities were tested and hints on the structural modifications needed in order to minimize their RM formation were provided. Furthermore, the RM-GS formation rates of a number of compounds were compared using their in vitro covalent binding yields to liver proteins determined with (14)C-labeled compounds, demonstrating that the RM-GS formation rate could be a substitute for the covalent binding yield within the same series of compounds.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Glutatión/metabolismo , Preparaciones Farmacéuticas/metabolismo , Biotransformación , Cromatografía Líquida de Alta Presión , Compuestos de Dansilo/química , Diseño de Fármacos , Glutatión/química , Humanos , Microsomas Hepáticos/metabolismo , Preparaciones Farmacéuticas/química , Valor Predictivo de las Pruebas , Unión Proteica , Proteínas/metabolismo , Radioisótopos de Azufre
6.
Drug Metab Dispos ; 36(9): 1770-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18508880

RESUMEN

Bioactivation of a drug to a reactive metabolite and its covalent binding to cellular macromolecules is believed to be involved in clinical adverse events, including idiosyncratic drug toxicities (IDTs). For the interpretation of the covalent binding data in terms of risk assessment, the in vitro and in vivo covalent binding data of a variety of drugs associated with IDTs or not were determined. Most of the "problematic" drugs, including "withdrawn" and "warning" drugs, exhibit higher human liver microsome (HLM) in vitro covalent binding yields than the "safe" drugs. Although some of the problematic drugs that are known to undergo bioactivation other than cytochrome P450-mediated oxidation exhibited only trace levels of HLM covalent binding like safe drugs, a rat in vivo covalent binding study could assess the bioactivation of such drugs. Furthermore, the tissue distribution/retention of the drugs was also examined by rat autoradiography (ARG). The residual radioactivity in the liver observed at 72 or 168 h postdose was found to be well correlated with the rat in vivo covalent binding to liver proteins; thus, the in vivo covalent binding yields of the drugs could be extrapolated from the retention profiles observed by means of ARG. Long-term retention of radioactivity in the bone marrow was observed with some drugs associated with severe agranulocytosis, suggesting a spatial relationship between the toxicity profile and drug distribution/retention. Taken together, the covalent binding and tissue distribution/retention data of the various marketed drugs obtained in the present study should be quite informative for the interpretation of data in terms of risk assessment.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Farmacocinética , Animales , Autorradiografía , Radioisótopos de Carbono , Masculino , Ensayo de Unión Radioligante , Ratas , Distribución Tisular
7.
Chem Res Toxicol ; 20(3): 455-64, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17309281

RESUMEN

The covalent binding of reactive intermediates to macromolecules might have potential involvement in severe adverse drug reactions. Thus, quantification of reactive metabolites is necessary during the early stage of drug discovery to avoid serious toxicity. In this study, the relationship between covalent binding and glutathione (GSH) conjugate formation in rat and human liver microsomes were investigated using 10 representative radioactive compounds that have been reported as hepatotoxic or having other toxicity derived from their reactive intermediates: acetaminophen, amodiaquine, carbamazepine, clozapine, diclofenac, furosemide, imipramine, indomethacin, isoniazid, and tienilic acid, all at a concentration of 10 microM. The GSH conjugate formation rate correlates well with the covalent binding of radioactivity (both rat and human, r2 = 0.93), which suggests that quantification of the GSH conjugate can be used to estimate covalent binding. To quantify the GSH-conjugation rate with non-radiolabeled compounds in vitro, the validation study for the determination of GSH conjugate formation using 35S-GSH by radio-HPLC was useful to predict metabolic activation. Following oral administration of 20 mg/kg of the radiolabeled compounds to rats, radioactivity that covalently bound to plasma and liver proteins was determined. The in vivo maximum covalent binding level in liver based on the free fraction of plasma area under the concentration curve (AUC) and in vitro covalent binding rate was found to correlate well (r2 = 0.79). Therefore, this model for in vitro covalent binding studies in human and rat and in vivo rat studies might be useful in predicting human metabolic activation of compounds.


Asunto(s)
Glutatión/química , Glutatión/metabolismo , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Adolescente , Adulto , Anciano , Animales , Área Bajo la Curva , Biotransformación , Proteínas Sanguíneas/metabolismo , Niño , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Técnicas In Vitro , Masculino , Microsomas Hepáticos/metabolismo , Persona de Mediana Edad , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Espectrofotometría Ultravioleta , Radioisótopos de Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...