Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38487996

RESUMEN

The most recent Sudan virus (SUDV) outbreak in Uganda was first detected in September 2022 and resulted in 164 laboratory-confirmed cases and 77 deaths. There are no approved vaccines against SUDV. Here, we investigated the protective efficacy of ChAdOx1-biEBOV in cynomolgus macaques using a prime or a prime-boost regimen. ChAdOx1-biEBOV is a replication-deficient simian adenovirus vector encoding SUDV and Ebola virus (EBOV) glycoproteins (GPs). Intramuscular vaccination induced SUDV and EBOV GP-specific IgG responses and neutralizing antibodies. Upon challenge with SUDV, vaccinated animals showed signs of disease like those observed in control animals, and no difference in survival outcomes were measured among all three groups. Viral load in blood samples and in tissue samples obtained after necropsy were not significantly different between groups. Overall, this study highlights the importance of evaluating vaccines in multiple animal models and demonstrates the importance of understanding protective efficacy in both animal models and human hosts.

2.
Nat Med ; 29(1): 147-157, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228659

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine immunogenicity varies between individuals, and immune responses correlate with vaccine efficacy. Using data from 1,076 participants enrolled in ChAdOx1 nCov-19 vaccine efficacy trials in the United Kingdom, we found that inter-individual variation in normalized antibody responses against SARS-CoV-2 spike and its receptor-binding domain (RBD) at 28 days after first vaccination shows genome-wide significant association with major histocompatibility complex (MHC) class II alleles. The most statistically significant association with higher levels of anti-RBD antibody was HLA-DQB1*06 (P = 3.2 × 10-9), which we replicated in 1,677 additional vaccinees. Individuals carrying HLA-DQB1*06 alleles were less likely to experience PCR-confirmed breakthrough infection during the ancestral SARS-CoV-2 virus and subsequent Alpha variant waves compared to non-carriers (hazard ratio = 0.63, 0.42-0.93, P = 0.02). We identified a distinct spike-derived peptide that is predicted to bind differentially to HLA-DQB1*06 compared to other similar alleles, and we found evidence of increased spike-specific memory B cell responses in HLA-DQB1*06 carriers at 84 days after first vaccination. Our results demonstrate association of HLA type with Coronavirus Disease 2019 (COVID-19) vaccine antibody response and risk of breakthrough infection, with implications for future vaccine design and implementation.


Asunto(s)
Infección Irruptiva , Vacunas contra la COVID-19 , COVID-19 , Antígenos de Histocompatibilidad Clase II , Inmunogenicidad Vacunal , Humanos , Alelos , Anticuerpos Antivirales , ChAdOx1 nCoV-19 , COVID-19/genética , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , SARS-CoV-2 , Vacunación
3.
Lancet Microbe ; 3(9): e663-e671, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35907430

RESUMEN

BACKGROUND: Rabies kills around 60 000 people each year. ChAdOx2 RabG, a simian adenovirus-vectored rabies vaccine candidate, might have potential to provide low-cost single-dose pre-exposure rabies prophylaxis. This first-in-human study aimed to evaluate its safety and immunogenicity in healthy adults. METHODS: We did a single-centre phase 1 study of ChAdOx2 RabG, administered as a single intramuscular dose, with non-randomised open-label dose escalation at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford, UK. Healthy adults were sequentially allocated to groups receiving low (5 × 109 viral particles), middle (2·5 × 1010 viral particles), and high doses (5 x 1010 viral particles) of ChAdOx2 RabG and were followed up to day 56 after vaccination. The primary objective was to assess safety. The secondary objective was to assess immunogenicity with the internationally standardised rabies virus neutralising antibody assay. In an optional follow-up phase 1 year after enrolment, we measured antibody maintenance then administered a licensed rabies vaccine (to simulate post-exposure prophylaxis) and measured recall responses. The trial is registered with ClinicalTrials.gov, NCT04162600, and is now closed to new participants. FINDINGS: Between Jan 2 and Oct 28, 2020, 12 adults received low (n=3), middle (n=3), and high doses (n=6) of ChAdOx2 RabG. Participants reported predominantly mild-to-moderate reactogenicity. There were no serious adverse events. Virus neutralising antibody concentrations exceeded the recognised correlate of protection (0·5 IU/mL) in three middle-dose recipients and six high-dose recipients within 56 days of vaccination (median 18·0 IU/mL). The median peak virus neutralising antibody concentrations within 56 days were 0·7 IU/mL (range 0·0-54·0 IU/mL) for the low-dose group, 18·0 IU/mL (0·7-18·0 IU/mL) for the middle-dose group, and 18·0 IU/mL (6·0-486·0 IU/mL) for the high-dose group. Nine participants returned for the additional follow-up after 1 year. Of these nine participants, virus neutralising antibody titres of more than 0·5 IU/mL were maintained in six of seven who had received middle-dose or high-dose ChAdOx2 RabG. Within 7 days of administration of the first dose of a licensed rabies vaccine, nine participants had virus neutralising antibody titres of more than 0·5 IU/mL. INTERPRETATION: In this study, ChAdOx2 RabG showed an acceptable safety and tolerability profile and encouraging immunogenicity, supporting further clinical evaluation. FUNDING: UK Medical Research Council and Engineering and Physical Sciences Research Council.


Asunto(s)
Adenovirus de los Simios , Vacunas Antirrábicas , Rabia , Adenovirus de los Simios/genética , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Rabia/prevención & control , Vacunas Antirrábicas/efectos adversos
4.
Front Immunol ; 13: 795463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197971

RESUMEN

Protection from liver-stage malaria requires high numbers of CD8+ T cells to find and kill Plasmodium-infected cells. A new malaria vaccine strategy, prime-target vaccination, involves sequential viral-vectored vaccination by intramuscular and intravenous routes to target cellular immunity to the liver. Liver tissue-resident memory (TRM) CD8+ T cells have been shown to be necessary and sufficient for protection against rodent malaria by this vaccine regimen. Ultimately, to most faithfully assess immunotherapeutic responses by these local, specialised, hepatic T cells, periodic liver sampling is necessary, however this is not feasible at large scales in human trials. Here, as part of a phase I/II P. falciparum challenge study of prime-target vaccination, we performed deep immune phenotyping, single-cell RNA-sequencing and kinetics of hepatic fine needle aspirates and peripheral blood samples to study liver CD8+ TRM cells and circulating counterparts. We found that while these peripheral 'TRM-like' cells differed to TRM cells in terms of previously described characteristics, they are similar phenotypically and indistinguishable in terms of key T cell residency transcriptional signatures. By exploring the heterogeneity among liver CD8+ TRM cells at single cell resolution we found two main subpopulations that each share expression profiles with blood T cells. Lastly, our work points towards the potential for using TRM-like cells as a correlate of protection by liver-stage malaria vaccines and, in particular, those adopting a prime-target approach. A simple and reproducible correlate of protection would be particularly valuable in trials of liver-stage malaria vaccines as they progress to phase III, large-scale testing in African infants. We provide a blueprint for understanding and monitoring liver TRM cells induced by a prime-target malaria vaccine approach.


Asunto(s)
Vacunas contra la Malaria/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Vectores Genéticos , Hepatocitos/inmunología , Humanos , Inmunidad Celular , Memoria Inmunológica/inmunología , Hígado/inmunología , Malaria/inmunología , Plasmodium/inmunología , Esporozoítos/inmunología , Transcriptoma , Vacunación
5.
JCI Insight ; 7(7)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35192543

RESUMEN

Duration of protection from SARS-CoV-2 infection in people living with HIV (PWH) following vaccination is unclear. In a substudy of the phase II/III the COV002 trial (NCT04400838), 54 HIV+ male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells > 350 cells/µL) received 2 doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and Meso Scale Discovery [MSD]), neutralization, ACE-2 inhibition, IFN-γ ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that, 6 months after vaccination, the majority of measurable immune responses were greater than prevaccination baseline but with evidence of a decline in both humoral and cell-mediated immunity. There was, however, no significant difference compared with a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although they were lower than WT. Preexisting cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater postvaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the ongoing policy to vaccinate PWH against SARS-CoV-2, and they underpin the need for long-term monitoring of responses after vaccination.


Asunto(s)
COVID-19 , Infecciones por VIH , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , SARS-CoV-2 , Vacunación
6.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35192547

RESUMEN

Cytomegalovirus (CMV) is a globally ubiquitous pathogen with a seroprevalence of approximately 50% in the United Kingdom. CMV infection induces expansion of immunosenescent T cell and NK cell populations, with these cells demonstrating lower responsiveness to activation and reduced functionality upon infection and vaccination. In this study, we found that CMV+ participants had normal T cell responses after a single-dose or homologous vaccination with the viral vector chimpanzee adenovirus developed by the University of Oxford (ChAdOx1). CMV seropositivity was associated with reduced induction of IFN-γ-secreting T cells in a ChAd-Modified Vaccinia Ankara (ChAd-MVA) viral vector vaccination trial. Analysis of participants receiving a single dose of ChAdOx1 demonstrated that T cells from CMV+ donors had a more terminally differentiated profile of CD57+PD1+CD4+ T cells and CD8+ T cells expressing less IL-2Rα (CD25) and fewer polyfunctional CD4+ T cells 14 days after vaccination. NK cells from CMV-seropositive individuals also had a reduced activation profile. Overall, our data suggest that although CMV infection enhances immunosenescence of T and NK populations, it does not affect antigen-specific T cell IFN-γ secretion or antibody IgG production after vaccination with the current ChAdOx1 nCoV-19 vaccination regimen, which has important implications given the widespread use of this vaccine, particularly in low- and middle-income countries with high CMV seroprevalence.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , ChAdOx1 nCoV-19 , Humanos , Células Asesinas Naturales , Estudios Seroepidemiológicos , Vacunación
7.
Nat Commun ; 12(1): 4636, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330906

RESUMEN

Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18-50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and T-cell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Vacunas Virales/inmunología , Adolescente , Adulto , Fiebre Chikungunya/prevención & control , Fiebre Chikungunya/virología , Virus Chikungunya/clasificación , Virus Chikungunya/fisiología , Citocinas/inmunología , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Fatiga/inducido químicamente , Femenino , Cefalea/inducido químicamente , Humanos , Inmunoglobulina G/inmunología , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunación/métodos , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Adulto Joven
8.
Lancet HIV ; 8(8): e474-e485, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34153264

RESUMEN

BACKGROUND: Data on vaccine immunogenicity against SARS-CoV-2 are needed for the 40 million people globally living with HIV who might have less functional immunity and more associated comorbidities than the general population. We aimed to explore safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in people with HIV. METHODS: In this single-arm open-label vaccination substudy within the protocol of the larger phase 2/3 trial COV002, adults aged 18-55 years with HIV were enrolled at two HIV clinics in London, UK. Eligible participants were required to be on antiretroviral therapy (ART), with undetectable plasma HIV viral loads (<50 copies per mL), and CD4 counts of more than 350 cells per µL. A prime-boost regimen of ChAdOx1 nCoV-19, with two doses was given 4-6 weeks apart. The primary outcomes for this substudy were safety and reactogenicity of the vaccine, as determined by serious adverse events and solicited local and systemic reactions. Humoral responses were measured by anti-spike IgG ELISA and antibody-mediated live virus neutralisation. Cell-mediated immune responses were measured by ex-vivo IFN-γ enzyme-linked immunospot assay (ELISpot) and T-cell proliferation. All outcomes were compared with an HIV-uninfected group from the main COV002 study within the same age group and dosing strategy and are reported until day 56 after prime vaccination. Outcomes were analysed in all participants who received both doses and with available samples. The COV002 study is registered with ClinicalTrials.gov, NCT04400838, and is ongoing. FINDINGS: Between Nov 5 and Nov 24, 2020, 54 participants with HIV (all male, median age 42·5 years [IQR 37·2-49·8]) were enrolled and received two doses of ChAdOx1 nCoV-19. Median CD4 count at enrolment was 694·0 cells per µL (IQR 573·5-859·5). No serious adverse events occurred. Local and systemic reactions occurring during the first 7 days after prime vaccination included pain at the injection site (26 [49%] of 53 participants with available data), fatigue (25 [47%]), headache (25 [47%]), malaise (18 [34%]), chills (12 [23%]), muscle ache (19 [36%]), joint pain (five [9%]), and nausea (four [8%]), the frequencies of which were similar to the HIV-negative participants. Anti-spike IgG responses by ELISA peaked at day 42 (median 1440 ELISA units [EUs; IQR 704-2728]; n=50) and were sustained until day 56 (median 941 EUs [531-1445]; n=49). We found no correlation between the magnitude of the anti-spike IgG response at day 56 and CD4 cell count (p=0·93) or age (p=0·48). ELISpot and T-cell proliferative responses peaked at day 14 and 28 after prime dose and were sustained to day 56. Compared with participants without HIV, we found no difference in magnitude or persistence of SARS-CoV-2 spike-specific humoral or cellular responses (p>0·05 for all analyses). INTERPRETATION: In this study of people with HIV, ChAdOx1 nCoV-19 was safe and immunogenic, supporting vaccination for those well controlled on ART. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Infecciones por VIH/inmunología , SARS-CoV-2/inmunología , Adulto , Recuento de Linfocito CD4 , Vacunas contra la COVID-19/efectos adversos , ChAdOx1 nCoV-19 , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Vacunación
11.
Vaccines (Basel) ; 9(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809415

RESUMEN

Heterologous prime-boost strategies are known to substantially increase immune responses in viral vectored vaccines. Here we report on safety and immunogenicity of the poxvirus Modified Vaccinia Ankara (MVA) vectored vaccine expressing four Mycobacterium avium subspecies paratuberculosis antigens as a single dose or as a booster vaccine following a simian adenovirus (ChAdOx2) prime. We demonstrate that a heterologous prime-boost schedule is well tolerated and induced T-cell immune responses.

12.
Nat Med ; 27(2): 279-288, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33335322

RESUMEN

More than 190 vaccines are currently in development to prevent infection by the novel severe acute respiratory syndrome coronavirus 2. Animal studies suggest that while neutralizing antibodies against the viral spike protein may correlate with protection, additional antibody functions may also be important in preventing infection. Previously, we reported early immunogenicity and safety outcomes of a viral vector coronavirus vaccine, ChAdOx1 nCoV-19 (AZD1222), in a single-blinded phase 1/2 randomized controlled trial of healthy adults aged 18-55 years ( NCT04324606 ). Now we describe safety and exploratory humoral and cellular immunogenicity of the vaccine, from subgroups of volunteers in that trial, who were subsequently allocated to receive a homologous full-dose (SD/SD D56; n = 20) or half-dose (SD/LD D56; n = 32) ChAdOx1 booster vaccine 56 d following prime vaccination. Previously reported immunogenicity data from the open-label 28-d interval prime-boost group (SD/SD D28; n = 10) are also presented to facilitate comparison. Additionally, we describe volunteers boosted with the comparator vaccine (MenACWY; n = 10). In this interim report, we demonstrate that a booster dose of ChAdOx1 nCoV-19 is safe and better tolerated than priming doses. Using a systems serology approach we also demonstrate that anti-spike neutralizing antibody titers, as well as Fc-mediated functional antibody responses, including antibody-dependent neutrophil/monocyte phagocytosis, complement activation and natural killer cell activation, are substantially enhanced by a booster dose of vaccine. A booster dose of vaccine induced stronger antibody responses than a dose-sparing half-dose boost, although the magnitude of T cell responses did not increase with either boost dose. These data support the two-dose vaccine regime that is now being evaluated in phase 3 clinical trials.


Asunto(s)
Formación de Anticuerpos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunización Secundaria , SARS-CoV-2/inmunología , Adolescente , Adulto , Anticuerpos Neutralizantes/inmunología , ChAdOx1 nCoV-19 , Relación Dosis-Respuesta a Droga , Vectores Genéticos/inmunología , Humanos , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Adulto Joven
13.
Nat Med ; 27(2): 270-278, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33335323

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), has caused a global pandemic, and safe, effective vaccines are urgently needed1. Strong, Th1-skewed T cell responses can drive protective humoral and cell-mediated immune responses2 and might reduce the potential for disease enhancement3. Cytotoxic T cells clear virus-infected host cells and contribute to control of infection4. Studies of patients infected with SARS-CoV-2 have suggested a protective role for both humoral and cell-mediated immune responses in recovery from COVID-19 (refs. 5,6). ChAdOx1 nCoV-19 (AZD1222) is a candidate SARS-CoV-2 vaccine comprising a replication-deficient simian adenovirus expressing full-length SARS-CoV-2 spike protein. We recently reported preliminary safety and immunogenicity data from a phase 1/2 trial of the ChAdOx1 nCoV-19 vaccine (NCT04400838)7 given as either a one- or two-dose regimen. The vaccine was tolerated, with induction of neutralizing antibodies and antigen-specific T cells against the SARS-CoV-2 spike protein. Here we describe, in detail, exploratory analyses of the immune responses in adults, aged 18-55 years, up to 8 weeks after vaccination with a single dose of ChAdOx1 nCoV-19 in this trial, demonstrating an induction of a Th1-biased response characterized by interferon-γ and tumor necrosis factor-α cytokine secretion by CD4+ T cells and antibody production predominantly of IgG1 and IgG3 subclasses. CD8+ T cells, of monofunctional, polyfunctional and cytotoxic phenotypes, were also induced. Taken together, these results suggest a favorable immune profile induced by ChAdOx1 nCoV-19 vaccine, supporting the progression of this vaccine candidate to ongoing phase 2/3 trials to assess vaccine efficacy.


Asunto(s)
Formación de Anticuerpos/inmunología , Vacunas contra la COVID-19/inmunología , Linfocitos T/inmunología , Adolescente , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/virología , ChAdOx1 nCoV-19 , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina A/inmunología , Inmunoglobulina M/inmunología , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Subunidades de Proteína/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Adulto Joven
14.
Lancet ; 396(10267): 1979-1993, 2021 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-33220855

RESUMEN

BACKGROUND: Older adults (aged ≥70 years) are at increased risk of severe disease and death if they develop COVID-19 and are therefore a priority for immunisation should an efficacious vaccine be developed. Immunogenicity of vaccines is often worse in older adults as a result of immunosenescence. We have reported the immunogenicity of a novel chimpanzee adenovirus-vectored vaccine, ChAdOx1 nCoV-19 (AZD1222), in young adults, and now describe the safety and immunogenicity of this vaccine in a wider range of participants, including adults aged 70 years and older. METHODS: In this report of the phase 2 component of a single-blind, randomised, controlled, phase 2/3 trial (COV002), healthy adults aged 18 years and older were enrolled at two UK clinical research facilities, in an age-escalation manner, into 18-55 years, 56-69 years, and 70 years and older immunogenicity subgroups. Participants were eligible if they did not have severe or uncontrolled medical comorbidities or a high frailty score (if aged ≥65 years). First, participants were recruited to a low-dose cohort, and within each age group, participants were randomly assigned to receive either intramuscular ChAdOx1 nCoV-19 (2·2 × 1010 virus particles) or a control vaccine, MenACWY, using block randomisation and stratified by age and dose group and study site, using the following ratios: in the 18-55 years group, 1:1 to either two doses of ChAdOx1 nCoV-19 or two doses of MenACWY; in the 56-69 years group, 3:1:3:1 to one dose of ChAdOx1 nCoV-19, one dose of MenACWY, two doses of ChAdOx1 nCoV-19, or two doses of MenACWY; and in the 70 years and older, 5:1:5:1 to one dose of ChAdOx1 nCoV-19, one dose of MenACWY, two doses of ChAdOx1 nCoV-19, or two doses of MenACWY. Prime-booster regimens were given 28 days apart. Participants were then recruited to the standard-dose cohort (3·5-6·5 × 1010 virus particles of ChAdOx1 nCoV-19) and the same randomisation procedures were followed, except the 18-55 years group was assigned in a 5:1 ratio to two doses of ChAdOx1 nCoV-19 or two doses of MenACWY. Participants and investigators, but not staff administering the vaccine, were masked to vaccine allocation. The specific objectives of this report were to assess the safety and humoral and cellular immunogenicity of a single-dose and two-dose schedule in adults older than 55 years. Humoral responses at baseline and after each vaccination until 1 year after the booster were assessed using an in-house standardised ELISA, a multiplex immunoassay, and a live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) microneutralisation assay (MNA80). Cellular responses were assessed using an ex-vivo IFN-γ enzyme-linked immunospot assay. The coprimary outcomes of the trial were efficacy, as measured by the number of cases of symptomatic, virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were by group allocation in participants who received the vaccine. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. This study is ongoing and is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137. FINDINGS: Between May 30 and Aug 8, 2020, 560 participants were enrolled: 160 aged 18-55 years (100 assigned to ChAdOx1 nCoV-19, 60 assigned to MenACWY), 160 aged 56-69 years (120 assigned to ChAdOx1 nCoV-19: 40 assigned to MenACWY), and 240 aged 70 years and older (200 assigned to ChAdOx1 nCoV-19: 40 assigned to MenACWY). Seven participants did not receive the boost dose of their assigned two-dose regimen, one participant received the incorrect vaccine, and three were excluded from immunogenicity analyses due to incorrectly labelled samples. 280 (50%) of 552 analysable participants were female. Local and systemic reactions were more common in participants given ChAdOx1 nCoV-19 than in those given the control vaccine, and similar in nature to those previously reported (injection-site pain, feeling feverish, muscle ache, headache), but were less common in older adults (aged ≥56 years) than younger adults. In those receiving two standard doses of ChAdOx1 nCoV-19, after the prime vaccination local reactions were reported in 43 (88%) of 49 participants in the 18-55 years group, 22 (73%) of 30 in the 56-69 years group, and 30 (61%) of 49 in the 70 years and older group, and systemic reactions in 42 (86%) participants in the 18-55 years group, 23 (77%) in the 56-69 years group, and 32 (65%) in the 70 years and older group. As of Oct 26, 2020, 13 serious adverse events occurred during the study period, none of which were considered to be related to either study vaccine. In participants who received two doses of vaccine, median anti-spike SARS-CoV-2 IgG responses 28 days after the boost dose were similar across the three age cohorts (standard-dose groups: 18-55 years, 20 713 arbitrary units [AU]/mL [IQR 13 898-33 550], n=39; 56-69 years, 16 170 AU/mL [10 233-40 353], n=26; and ≥70 years 17 561 AU/mL [9705-37 796], n=47; p=0·68). Neutralising antibody titres after a boost dose were similar across all age groups (median MNA80 at day 42 in the standard-dose groups: 18-55 years, 193 [IQR 113-238], n=39; 56-69 years, 144 [119-347], n=20; and ≥70 years, 161 [73-323], n=47; p=0·40). By 14 days after the boost dose, 208 (>99%) of 209 boosted participants had neutralising antibody responses. T-cell responses peaked at day 14 after a single standard dose of ChAdOx1 nCoV-19 (18-55 years: median 1187 spot-forming cells [SFCs] per million peripheral blood mononuclear cells [IQR 841-2428], n=24; 56-69 years: 797 SFCs [383-1817], n=29; and ≥70 years: 977 SFCs [458-1914], n=48). INTERPRETATION: ChAdOx1 nCoV-19 appears to be better tolerated in older adults than in younger adults and has similar immunogenicity across all age groups after a boost dose. Further assessment of the efficacy of this vaccine is warranted in all age groups and individuals with comorbidities. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midlands NIHR Clinical Research Network, and AstraZeneca.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , Inmunogenicidad Vacunal , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/farmacología , ChAdOx1 nCoV-19 , Femenino , Humanos , Inmunización Secundaria/efectos adversos , Inmunoglobulina G/sangre , Inmunoglobulina G/efectos de los fármacos , Masculino , Persona de Mediana Edad , SARS-CoV-2/efectos de los fármacos , Método Simple Ciego , Adulto Joven
15.
Lancet ; 396(10249): 467-478, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32702298

RESUMEN

BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. METHODS: We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18-55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. FINDINGS: Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493-1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96-317; n=127), and were boosted following a second dose (639 EU, 360-792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). INTERPRETATION: ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. FUNDING: UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Inmunogenicidad Vacunal , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/efectos adversos , Vacunas Virales/inmunología , Acetaminofén/uso terapéutico , Adenovirus de los Simios/genética , Adulto , Analgésicos no Narcóticos/uso terapéutico , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Femenino , Vectores Genéticos/administración & dosificación , Humanos , Inmunización Secundaria , Inmunoglobulina G/sangre , Masculino , Neumonía Viral/tratamiento farmacológico , SARS-CoV-2 , Método Simple Ciego , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Reino Unido , Vacunas Virales/administración & dosificación
16.
Lancet Infect Dis ; 20(7): 816-826, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32325038

RESUMEN

BACKGROUND: Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection continue to rise in the Arabian Peninsula 7 years after it was first described in Saudi Arabia. MERS-CoV poses a significant risk to public health security because of an absence of currently available effective countermeasures. We aimed to assess the safety and immunogenicity of the candidate simian adenovirus-vectored vaccine expressing the full-length spike surface glycoprotein, ChAdOx1 MERS, in humans. METHODS: This dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial was done at the Centre for Clinical Vaccinology and Tropical Medicine (Oxford, UK) and included healthy people aged 18-50 years with negative pre-vaccination tests for HIV antibodies, hepatitis B surface antigen, and hepatitis C antibodies (and a negative urinary pregnancy test for women). Participants received a single intramuscular injection of ChAdOx1 MERS at three different doses: the low-dose group received 5 × 109 viral particles, the intermediate-dose group received 2·5 × 1010 viral particles, and the high-dose group received 5 × 1010 viral particles. The primary objective was to assess safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited, unsolicited, and serious adverse events after vaccination. The secondary objective was to assess the cellular and humoral immunogenicity of ChAdOx1 MERS, measured by interferon-γ-linked enzyme-linked immunospot, ELISA, and virus neutralising assays after vaccination. Participants were followed up for up to 12 months. This study is registered with ClinicalTrials.gov, NCT03399578. FINDINGS: Between March 14 and Aug 15, 2018, 24 participants were enrolled: six were assigned to the low-dose group, nine to the intermediate-dose group, and nine to the high-dose group. All participants were available for follow-up at 6 months, but five (one in the low-dose group, one in the intermediate-dose group, and three in the high-dose group) were lost to follow-up at 12 months. A single dose of ChAdOx1 MERS was safe at doses up to 5 × 1010 viral particles with no vaccine-related serious adverse events reported by 12 months. One serious adverse event reported was deemed to be not related to ChAdOx1 MERS. 92 (74% [95% CI 66-81]) of 124 solicited adverse events were mild, 31 (25% [18-33]) were moderate, and all were self-limiting. Unsolicited adverse events in the 28 days following vaccination considered to be possibly, probably, or definitely related to ChAdOx1 MERS were predominantly mild in nature and resolved within the follow-up period of 12 months. The proportion of moderate and severe adverse events was significantly higher in the high-dose group than in the intermediate-dose group (relative risk 5·83 [95% CI 2·11-17·42], p<0·0001) Laboratory adverse events considered to be at least possibly related to the study intervention were self-limiting and predominantly mild in severity. A significant increase from baseline in T-cell (p<0·003) and IgG (p<0·0001) responses to the MERS-CoV spike antigen was observed at all doses. Neutralising antibodies against live MERS-CoV were observed in four (44% [95% CI 19-73]) of nine participants in the high-dose group 28 days after vaccination, and 19 (79% [58-93]) of 24 participants had antibodies capable of neutralisation in a pseudotyped virus neutralisation assay. INTERPRETATION: ChAdOx1 MERS was safe and well tolerated at all tested doses. A single dose was able to elicit both humoral and cellular responses against MERS-CoV. The results of this first-in-human clinical trial support clinical development progression into field phase 1b and 2 trials. FUNDING: UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research.


Asunto(s)
Relación Dosis-Respuesta Inmunológica , Inmunogenicidad Vacunal , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Vacunas Virales/administración & dosificación , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales , Infecciones por Coronavirus/prevención & control , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Reino Unido , Vacunas de ADN , Adulto Joven
17.
J Pest Sci (2004) ; 93(1): 391-402, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31997983

RESUMEN

The parasitic small hive beetle (Aethina tumida) feeds on pollen, honey and brood of the European honey bee (Apis mellifera); establishment in North America and Australia has resulted in severe economic damage to the apiculture industry. We report potential for the "in-hive" use of a novel biopesticide that is toxic to this invasive beetle pest but harmless to honeybees. Constructs encoding the spider venom neurotoxin ω-hexatoxin-Hv1a (Hv1a) linked to the N- or C-terminus of snowdrop lectin (GNA) were used to produce recombinant Hv1a/GNA and GNA/Hv1a fusion proteins. Both were similarly toxic to beetles by injection (respective LD50s 1.5 and 0.9 nmoles/g larvae), whereas no effects on adult honeybee survival were observed at injection doses of > 200 nmoles/g insect. When fed to A. tumida larvae, GNA/Hv1a was significantly more effective than Hv1a/GNA (LC50s of 0.52 and 1.14 mg/ml diet, respectively), whereas both proteins were similarly toxic to adults. Results suggested that the reduced efficacy of Hv1a/GNA against larvae was attributable to differences in the susceptibility of the fusion proteins to cleavage by gut serine proteases. In laboratory assays, A. tumida larval survival was significantly reduced when brood, inoculated with eggs, was treated with GNA/Hv1a.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...