Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 58(33): 3527-3536, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31386347

RESUMEN

CPAF (chlamydial protease-like activity factor) is a Chlamydia trachomatis protease that is translocated into the host cytosol during infection. CPAF activity results in dampened host inflammation signaling, cytoskeletal remodeling, and suppressed neutrophil activation. Although CPAF is an emerging antivirulence target, its catalytic mechanism has been unexplored to date. Steady state kinetic parameters were obtained for recombinant CPAF with vimentin-derived peptide substrates using a high-performance liquid chromatography-based discontinuous assay (kcat = 45 ± 0.6 s-1; kcat/Km = 0.37 ± 0.02 µM-1 s-1) or a new fluorescence-based continuous assay (kcat = 23 ± 0.7 s-1; kcat/Km = 0.29 ± 0.03 µM-1 s-1). Residues H105, S499, E558, and newly identified D103 were found to be indispensable for autoproteolytic processing by mutagenesis, while participation of C500 was ruled out despite its proximity to the S499 nucleophile. Pre-steady state kinetics indicated a burst kinetic profile, with fast acylation (kacyl = 110 ± 2 s-1) followed by slower, partially rate-limiting deacylation (kdeacyl = 57 ± 1 s-1). Both kcat- and kcat/Km-pH profiles showed single acidic limb ionizations with pKa values of 6.2 ± 0.1 and 6.5 ± 0.1, respectively. A forward solvent deuterium kinetic isotope effect of 2.6 ± 0.1 was observed for D2Okcatapp, but a unity effect was found for D2Okcat/Kmapp. The kcat proton inventory was linear, indicating transfer of a single proton in the rate-determining transition state, most likely from H105. Collectively, these data provide support for the classification of CPAF as a serine protease and provide a mechanistic foundation for the future design of inhibitors.


Asunto(s)
Chlamydia trachomatis/enzimología , Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cinética , Proteolisis , Factores de Virulencia
2.
Nucleic Acids Res ; 44(15): 7385-94, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27174938

RESUMEN

Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of this complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Finally, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity.


Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Sustancias Macromoleculares/metabolismo , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Sustancias Macromoleculares/química , ARN Bacteriano/química , Transcripción Genética
3.
Mol Cell ; 62(1): 137-47, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27041224

RESUMEN

CRISPR-Cas adaptive immune systems in prokaryotes boast a diversity of protein families and mechanisms of action, where most systems rely on protospacer-adjacent motifs (PAMs) for DNA target recognition. Here, we developed an in vivo, positive, and tunable screen termed PAM-SCANR (PAM screen achieved by NOT-gate repression) to elucidate functional PAMs as well as an interactive visualization scheme termed the PAM wheel to convey individual PAM sequences and their activities. PAM-SCANR and the PAM wheel identified known functional PAMs while revealing complex sequence-activity landscapes for the Bacillus halodurans I-C (Cascade), Escherichia coli I-E (Cascade), Streptococcus thermophilus II-A CRISPR1 (Cas9), and Francisella novicida V-A (Cpf1) systems. The PAM wheel was also readily applicable to existing high-throughput screens and garnered insights into SpyCas9 and SauCas9 PAM diversity. These tools offer powerful means of elucidating and visualizing functional PAMs toward accelerating our ability to understand and exploit the multitude of CRISPR-Cas systems in nature.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Bacillus/química , Bacillus/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/química , Escherichia coli/metabolismo , Francisella/química , Francisella/metabolismo , Estructura Terciaria de Proteína , Streptococcus thermophilus/química , Streptococcus thermophilus/metabolismo
4.
PLoS One ; 11(2): e0147233, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26829550

RESUMEN

The need for more effective anti-chlamydial therapeutics has sparked research efforts geared toward further understanding chlamydial pathogenesis mechanisms. Recent studies have implicated the secreted chlamydial serine protease, chlamydial protease-like activity factor (CPAF) as potentially important for chlamydial pathogenesis. By mechanisms that remain to be elucidated, CPAF is directed to a discrete group of substrates, which are subsequently cleaved or degraded. While inspecting the previously solved CPAF crystal structure, we discovered that CPAF contains a cryptic N-terminal PSD95 Dlg ZO-1 (PDZ) domain spanning residues 106-212 (CPAF106-212). This PDZ domain is unique in that it bears minimal sequence similarity to canonical PDZ-forming sequences and displays little sequence and structural similarity to known chlamydial PDZ domains. We show that the CPAF106-212 sequence is homologous to PDZ domains of human tight junction proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Polaridad Celular , Chlamydia trachomatis/enzimología , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Homología Estructural de Proteína , Uniones Estrechas/metabolismo , Secuencia de Aminoácidos , Chlamydia trachomatis/genética , Biología Computacional , Secuencia Conservada , Genoma Bacteriano , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Relación Estructura-Actividad
5.
Biochemistry ; 55(11): 1652-62, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26673564

RESUMEN

Lysine-specific demethylase 1A (KDM1A/LSD1) is a FAD-dependent enzyme that catalyzes the oxidative demethylation of histone H3K4me1/2 and H3K9me1/2 repressing and activating transcription, respectively. Although the active site is expanded compared to that of members of the greater amine oxidase superfamily, it is too sterically restricted to encompass the minimal 21-mer peptide substrate footprint. The remainder of the substrate/product is therefore expected to extend along the surface of KDM1A. We show that full-length histone H3, which lacks any posttranslational modifications, is a tight-binding, competitive inhibitor of KDM1A demethylation activity with a Ki of 18.9 ± 1.2 nM, a value that is approximately 100-fold higher than that of the 21-mer peptide product. The relative H3 affinity is independent of preincubation time, suggesting that H3 rapidly reaches equilibrium with KDM1A. Jump dilution experiments confirmed the increased binding affinity of full-length H3 was at least partially due to a slow off rate (koff) of 1.2 × 10(-3) s(-1), corresponding to a half-life (t1/2) of 9.63 min, and a residence time (τ) of 13.9 min. Independent affinity capture surface plasmon resonance experiments confirmed the tight-binding nature of the H3/KDM1A interaction, revealing a Kd of 9.02 ± 2.3 nM, a kon of (9.3 ± 1.5) × 10(4) M(-1) s(-1), and a koff of (8.4 ± 0.3) × 10(-4) s(-1). Additionally, no other core histones exhibited inhibition of KDM1A demethylation activity, which is consistent with H3 being the preferred histone substrate of KDM1A versus H2A, H2B, and H4. Together, these data suggest that KDM1A likely contains a histone H3 secondary specificity element on the enzyme surface that contributes significantly to its recognition of substrates and products.


Asunto(s)
Histona Demetilasas/química , Histonas/química , Péptidos/química , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Cinética , Metilación , Péptidos/metabolismo , Especificidad por Sustrato/fisiología
6.
Structure ; 20(9): 1519-27, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22819218

RESUMEN

Fast, accurate nucleotide incorporation by polymerases facilitates expression and maintenance of genomes. Many polymerases use conformational dynamics of a conserved α helix to permit efficient nucleotide addition only when the correct nucleotide substrate is bound. This α helix is missing in structures of RNA-dependent RNA polymerases (RdRps) and RTs. Here, we use solution-state nuclear magnetic resonance to demonstrate that the conformation of conserved structural motif D of an RdRp is linked to the nature (correct versus incorrect) of the bound nucleotide and the protonation state of a conserved, motif-D lysine. Structural data also reveal the inability of motif D to achieve its optimal conformation after incorporation of an incorrect nucleotide. Functional data are consistent with the conformational change of motif D becoming rate limiting during and after nucleotide misincorporation. We conclude that motif D of RdRps and, by inference, RTs is the functional equivalent to the fidelity helix of other polymerases.


Asunto(s)
Nucleótidos/química , Poliovirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Secuencias de Aminoácidos , Emparejamiento Base , Secuencia de Bases , Biocatálisis , Dominio Catalítico , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Proteínas Virales
7.
Mol Cancer Ther ; 8(10): 2811-20, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19825801

RESUMEN

The insulin-like growth factor-I receptor (IGF-IR) signaling pathway is activated in various tumors, and inhibition of IGF-IR kinase provides a therapeutic opportunity in these patients. GSK1838705A is a small-molecule kinase inhibitor that inhibits IGF-IR and the insulin receptor with IC(50)s of 2.0 and 1.6 nmol/L, respectively. GSK1838705A blocks the in vitro proliferation of cell lines derived from solid and hematologic malignancies, including multiple myeloma and Ewing's sarcoma, and retards the growth of human tumor xenografts in vivo. Despite the inhibitory effect of GSK1838705A on insulin receptor, minimal effects on glucose homeostasis were observed at efficacious doses. GSK1838705A also inhibits the anaplastic lymphoma kinase (ALK), which drives the aberrant growth of anaplastic large-cell lymphomas, some neuroblastomas, and a subset of non-small cell lung cancers. GSK1838705A inhibits ALK, with an IC(50) of 0.5 nmol/L, and causes complete regression of ALK-dependent tumors in vivo at well-tolerated doses. GSK1838705A is therefore a promising antitumor agent for therapeutic use in human cancers.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Pirroles/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa de Linfoma Anaplásico , Animales , Glucemia/metabolismo , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Fosforilación/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Nat Struct Mol Biol ; 16(2): 212-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19151724

RESUMEN

Nucleic acid polymerases catalyze the formation of DNA or RNA from nucleoside-triphosphate precursors. Amino acid residues in the active site of polymerases are thought to contribute only indirectly to catalysis by serving as ligands for the two divalent cations that are required for activity or substrate binding. Two proton-transfer reactions are necessary for polymerase-catalyzed nucleotidyl transfer: deprotonation of the 3'-hydroxyl nucleophile and protonation of the pyrophosphate leaving group. Using model enzymes representing all four classes of nucleic acid polymerases, we show that the proton donor to pyrophosphate is an active-site amino acid residue. The use of general acid catalysis by polymerases extends the mechanism of nucleotidyl transfer beyond that of the well-established two-metal-ion mechanism. The existence of an active-site residue that regulates polymerase catalysis may permit manipulation of viral polymerase replication speed and/or fidelity for virus attenuation and vaccine development.


Asunto(s)
Aminoácidos/metabolismo , Nucleotidiltransferasas/metabolismo , Virus/enzimología , Catálisis , Manganeso/metabolismo , Modelos Moleculares , Ácidos Nucleicos/metabolismo , Nucleotidiltransferasas/química , Protones
9.
Proc Natl Acad Sci U S A ; 104(11): 4267-72, 2007 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-17360513

RESUMEN

The rate-limiting step for nucleotide incorporation in the pre-steady state for most nucleic acid polymerases is thought to be a conformational change. As a result, very little information is available on the role of active-site residues in the chemistry of nucleotidyl transfer. For the poliovirus RNA-dependent RNA polymerase (3D(pol)), chemistry is partially (Mg(2+)) or completely (Mn(2+)) rate limiting. Here we show that nucleotidyl transfer depends on two ionizable groups with pK(a) values of 7.0 or 8.2 and 10.5, depending upon the divalent cation used in the reaction. A solvent deuterium isotope effect of three to seven was observed on the rate constant for nucleotide incorporation in the pre-steady state; none was observed in the steady state. Proton-inventory experiments were consistent with two protons being transferred during the rate-limiting transition state of the reaction, suggesting that both deprotonation of the 3'-hydroxyl nucleophile and protonation of the pyrophosphate leaving group occur in the transition state for phosphodiester bond formation. Importantly, two proton transfers occur in the transition state for nucleotidyl-transfer reactions catalyzed by RB69 DNA-dependent DNA polymerase, T7 DNA-dependent RNA polymerase and HIV reverse transcriptase. Interpretation of these data in the context of known polymerase structures suggests the existence of a general base for deprotonation of the 3'-OH nucleophile, although use of a water molecule cannot be ruled out conclusively, and a general acid for protonation of the pyrophosphate leaving group in all nucleic acid polymerases. These data imply an associative-like transition-state structure.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ARN Polimerasas Dirigidas por ADN/química , ADN/química , Protones , ARN/química , Sitios de Unión , Catálisis , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Magnesio/química , Manganeso/química , Conformación de Ácido Nucleico , Poliovirus/genética , ARN Polimerasa Dependiente del ARN/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...