Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(4): 3364-3378, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38666941

RESUMEN

Neuroglobin (Ngb) is a cytosolic heme protein that plays an important role in protecting cells from apoptosis through interaction with oxidized cytochrome c (Cyt c) released from mitochondria. The interaction of reduced Ngb and oxidized Cyt c is accompanied by electron transfer between them and the reduction in Cyt c. Despite the growing number of studies on Ngb, the mechanism of interaction between Ngb and Cyt c is still unclear. Using Raman spectroscopy, we studied the effect of charged amino acid substitutions in Ngb and Cyt c on the conformation of their hemes. It has been shown that Ngb mutants E60K, K67E, K95E and E60K/E87K demonstrate changed heme conformations with the lower probability of the heme planar conformation compared to wild-type Ngb. Moreover, oxidized Cyt c mutants K25E, K72E and K25E/K72E demonstrate the decrease in the probability of methyl-radicals vibrations, indicating the higher rigidity of the protein microenvironment. It is possible that these changes can affect electron transfer between Ngb and Cyt c.

2.
J Photochem Photobiol B ; 252: 112870, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368635

RESUMEN

Raman spectroscopy (RS), a powerful analytical technique, has gained increasing recognition and utility in the fields of biomedical and biological research. Raman spectroscopic analyses find extensive application in the field of medicine and are employed for intricate research endeavors and diagnostic purposes. Consequently, it enjoys broad utilization within the realm of biological research, facilitating the identification of cellular classifications, metabolite profiling within the cellular milieu, and the assessment of pigment constituents within microalgae. This article also explores the multifaceted role of RS in these domains, highlighting its distinct advantages, acknowledging its limitations, and proposing strategies for enhancement.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos
3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686361

RESUMEN

Hemoglobin is the main protein of red blood cells that provides oxygen transport to all cells of the human body. The ability of hemoglobin to bind the main low-molecular-weight thiol of the cell glutathione, both covalently and noncovalently, is not only an important part of the antioxidant protection of red blood cells, but also affects its affinity for oxygen in both cases. In this study, the properties of oxyhemoglobin in complex with reduced glutathione (GSH) and properties of glutathionylated hemoglobin bound to glutathione via an SS bond were characterized. For this purpose, the methods of circular dichroism, Raman spectroscopy, infrared spectroscopy, tryptophan fluorescence, differential scanning fluorimetry, and molecular modeling were used. It was found that the glutathionylation of oxyhemoglobin caused changes in the secondary structure of the protein, reducing the alpha helicity, but did not affect the heme environment, tryptophan fluorescence, and the thermostability of the protein. In the noncovalent complex of oxyhemoglobin with reduced glutathione, the secondary structure of hemoglobin remained almost unchanged; however, changes in the heme environment and the microenvironment of tryptophans, as well as a decrease in the protein's thermal stability, were observed. Thus, the formation of a noncovalent complex of hemoglobin with glutathione makes a more significant effect on the tertiary and quaternary structure of hemoglobin than glutathionylation, which mainly affects the secondary structure of the protein. The obtained data are important for understanding the functioning of glutathionylated hemoglobin, which is a marker of oxidative stress, and hemoglobin in complex with GSH, which appears to deposit GSH and release it during deoxygenation to increase the antioxidant protection of cells.


Asunto(s)
Antioxidantes , Oxihemoglobinas , Humanos , Triptófano , Hemoglobinas , Glutatión , Hemo , Oxígeno
4.
Free Radic Biol Med ; 196: 133-144, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36649901

RESUMEN

The balance between the mitochondrial respiratory chain activity and the cell's needs in ATP ensures optimal cellular function. Cytochrome c is an essential component of the electron transport chain (ETC), which regulates ETC activity, oxygen consumption, ATP synthesis and can initiate apoptosis. The impact of conformational changes in cytochrome c on its function is not understood for the lack of access to these changes in intact mitochondria. We have developed a novel sensor that uses unique properties of label-free surface-enhanced Raman spectroscopy (SERS) to identify conformational changes in heme of cytochrome c and to elucidate their role in functioning mitochondria. We have verified that molecule bond vibrations assessed by SERS are a reliable indicator of the heme conformation during changes in the inner mitochondrial membrane potential and ETC activity. We have demonstrated that cytochrome c heme reversibly switches between planar and ruffled conformations in response to the inner mitochondrial membrane potential (ΔΨ) and H+ concentration in the intermembrane space. This regulates the efficiency of the mitochondrial respiratory chain, thus, adjusting the mitochondrial respiration to the cell's consumption of ATP and the overall activity. We have found that under hypertensive conditions cytochrome c heme loses its sensitivity to ΔΨ that can affect the regulation of ETC activity. The ability of the proposed SERS-based sensor to track mitochondrial function opens broad perspectives in cell bioenergetics.


Asunto(s)
Citocromos c , Hemo , Citocromos c/metabolismo , Hemo/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo
5.
Biomolecules ; 12(5)2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35625593

RESUMEN

A key event in the cytochrome c-dependent apoptotic pathway is the permeabilization of the outer mitochondrial membrane, resulting in the release of various apoptogenic factors, including cytochrome c, into the cytosol. It is believed that the permeabilization of the outer mitochondrial membrane can be induced by the peroxidase activity of cytochrome c in a complex with cardiolipin. Using a number of mutant variants of cytochrome c, we showed that both substitutions of Lys residues from the universal binding site for oppositely charged Glu residues and mutations leading to a decrease in the conformational mobility of the red Ω-loop in almost all cases did not affect the ability of cytochrome c to bind to cardiolipin. At the same time, the peroxidase activity of all mutant variants in a complex with cardiolipin was three to five times higher than that of the wild type. A pronounced increase in the ability to permeabilize the lipid membrane in the presence of hydrogen peroxide, as measured by calcein leakage from liposomes, was observed only in the case of four substitutions in the red Ω-loop (M4 mutant). According to resonance and surface-enhanced Raman spectroscopy, the mutations caused significant changes in the heme of oxidized cytochrome c molecules resulting in an increased probability of the plane heme conformation and the enhancement of the rigidity of the protein surrounding the heme. The binding of wild-type and mutant forms of oxidized cytochrome c to cardiolipin-containing liposomes caused the disordering of the acyl lipid chains that was more pronounced for the M4 mutant. Our findings indicate that the Ω-loop is important for the pore formation in cardiolipin-containing membranes.


Asunto(s)
Cardiolipinas , Citocromos c , Antioxidantes , Cardiolipinas/metabolismo , Citocromos c/metabolismo , Hemo , Liposomas/metabolismo , Mutación , Peroxidasas/genética
6.
Cells ; 11(3)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159196

RESUMEN

Nowadays, there is an interest in biomedical and nanobiotechnological studies, such as studies on carotenoids as antioxidants and studies on molecular markers for cardiovascular, endocrine, and oncological diseases. Moreover, interest in industrial production of microalgal biomass for biofuels and bioproducts has stimulated studies on microalgal physiology and mechanisms of synthesis and accumulation of valuable biomolecules in algal cells. Biomolecules such as neutral lipids and carotenoids are being actively explored by the biotechnology community. Raman spectroscopy (RS) has become an important tool for researchers to understand biological processes at the cellular level in medicine and biotechnology. This review provides a brief analysis of existing studies on the application of RS for investigation of biological, medical, analytical, photosynthetic, and algal research, particularly to understand how the technique can be used for lipids, carotenoids, and cellular research. First, the review article shows the main applications of the modified Raman spectroscopy in medicine and biotechnology. Research works in the field of medicine and biotechnology are analysed in terms of showing the common connections of some studies as caretenoids and lipids. Second, this article summarises some of the recent advances in Raman microspectroscopy applications in areas related to microalgal detection. Strategies based on Raman spectroscopy provide potential for biochemical-composition analysis and imaging of living microalgal cells, in situ and in vivo. Finally, current approaches used in the papers presented show the advantages, perspectives, and other essential specifics of the method applied to plants and other species/objects.


Asunto(s)
Investigación Biomédica , Microalgas , Carotenoides , Lípidos/química , Espectrometría Raman
7.
Biosensors (Basel) ; 12(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35049660

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is a promising tool that can be used in the detection of molecular changes triggered by disease development. Cardiovascular diseases (CVDs) are caused by multiple pathologies originating at the cellular level. The identification of these deteriorations can provide a better understanding of CVD mechanisms, and the monitoring of the identified molecular changes can be employed in the development of novel biosensor tools for early diagnostics. We applied plasmonic SERS nanosensors to assess changes in the properties of erythrocytes under normotensive and hypertensive conditions in the animal model. We found that spontaneous hypertension in rats leads (i) to a decrease in the erythrocyte plasma membrane fluidity and (ii) to a decrease in the mobility of the heme of the membrane-bound hemoglobin. We identified SERS parameters that can be used to detect pathological changes in the plasma membrane and submembrane region of erythrocytes.


Asunto(s)
Técnicas Biosensibles , Hipertensión , Animales , Eritrocitos/química , Eritrocitos/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Hipertensión/sangre , Hipertensión/diagnóstico , Ratas , Espectrometría Raman
8.
Funct Plant Biol ; 48(10): 994-1004, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34210384

RESUMEN

Neonicotinoid insecticides are used against the wide range of pests to protect plants. The influence of neonicotinoids on target and non-target insects is well understood. Hence, there are controversial opinions about the effect of neonicotinoids on the plants. We investigated pigments and photosynthetic primary reactions in two maize genotypes (the inbred line zppl 225 and hybrid zp 341) under thiamethoxam (TMX) treatment by root irrigation. It was found that the effect of TMX depended on pesticide application techniques and selection of maize genotype. TMX was added to the soil by root irrigation on the 4th and 8th days after planting, and photosynthetic characteristics monitored on the 10th and 12th days after planting. The primary photochemical reactions in PSII (Fv/Fm) of both maize genotypes were not affected under two variants of TMX treatment during all growing period. The hybrid zp341 was shown to be more susceptible to both TMX treatments, demonstrating a decrease in photosynthetic characteristics (JIP-test parameters) as well as changes in the content of pigments and in the conformation of the carotenoid molecule. Our findings suggest that the combination of fluorescence method and Raman spectroscopy is a perspective tool for monitoring plant state under pesticide application.


Asunto(s)
Fotosíntesis , Zea mays , Genotipo , Neonicotinoides/toxicidad , Tiametoxam , Zea mays/genética
9.
Biochemistry (Mosc) ; 86(5): 533-539, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33993863

RESUMEN

Binding of dinitrosyl iron complex (DNIC) to albumin was studied using time-resolved fluorescence (TRF) and electron spin resonance (ESR) spectroscopy. It was found that the fluorescence lifetime of bovine serum albumin (BSA) and human serum albumin (HSA) decreases with binding and depends on DNIC concentration. The observed biexponential pattern of the BSA tryptophan (Trp) fluorescence decay is explained by the presence of two tryptophan residues in the protein molecule. We believe that DNIC forms stable complexes with the cysteine (Cys34) residue in the domain I of albumin. It was shown that the lifetime of albumin tryptophan fluorescence decreased during co-incubation of BSA with DNICs and glutathione. Effects of DNIC on the binding of specific spin-labeled fatty acids with albumin in human blood plasma were studied in vitro. The presence of DNIC in blood plasma does not change conformation of albumin domains II and III. We suggest that the most possible interaction between DNICs and albumin is the formation of a complex; and nitrosylation of the cysteine residue in the albumin domain I occurs without the changes in albumin conformation.


Asunto(s)
Hierro/farmacología , Óxidos de Nitrógeno/farmacología , Albúmina Sérica Bovina/efectos de los fármacos , Albúmina Sérica/efectos de los fármacos , Albúmina Sérica/metabolismo , Adulto , Anciano , Animales , Bovinos , Espectroscopía de Resonancia por Spin del Electrón , Glutatión/química , Humanos , Hierro/química , Masculino , Persona de Mediana Edad , Óxidos de Nitrógeno/química , Conformación Proteica , Albúmina Sérica/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Espectrometría de Fluorescencia
10.
J Theor Biol ; 469: 137-147, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30831173

RESUMEN

Octopus cells (OCs) of the mammalian auditory brainstem precisely encode timing of fast transient sounds and tone onsets. Sharp temporal fidelity of OCs relies on low resting membrane resistance, which suggests high energy expenditure on maintaining ion gradients across plasma membrane. We provide a model-based estimate of energy consumption in resting and spiking OCs. Our results predict that a resting OC consumes up to 2.6 × 109 ATP molecules (ATPs) per second which remarkably exceeds energy consumption of other CNS neurons. Glucose usage by all OCs in the rat is nevertheless low due to their low number. Major part of the OCs energy use results from the ion mechanisms providing for the low membrane resistance: hyperpolarization-activated mixed cation conductance and low-voltage activated K+-conductance. Spatially ordered synapses-a feature of the OCs allowing them to compensate for asynchrony of the synaptic input-brings only a 12% energy saving to OCs excitability cost. Only 13% of total OC energy used for an AP generation (1.5 × 107 ATPs) is associated with the AP generation in the axon initial segment, 64%-with synaptic currents processing and 23%-with keeping resting potential.


Asunto(s)
Percepción Auditiva/fisiología , Tronco Encefálico/citología , Metabolismo Energético , Modelos Neurológicos , Neuronas/metabolismo , Potenciales de Acción , Cóclea/fisiología , Glucosa/metabolismo , Activación del Canal Iónico , Temperatura , Factores de Tiempo
11.
Biochim Biophys Acta Bioenerg ; 1860(2): 121-128, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30465750

RESUMEN

Cyanobacteria are thought to be responsible for pioneering dioxygen production and the so-called "Great Oxygenation Event" that determined the formation of the ozone layer and the ionosphere restricting ionizing radiation levels reaching our planet, which increased biological diversity but also abolished the necessity of radioprotection. We speculated that ancient protection mechanisms could still be present in cyanobacteria and studied the effect of ionizing radiation and space flight during the Foton-M4 mission on Synechocystis sp. PCC6803. Spectral and functional characteristics of photosynthetic membranes revealed numerous similarities of the effects of α-particles and space flight, which both interrupted excitation energy transfer from phycobilisomes to the photosystems and significantly reduced the concentration of phycobiliproteins. Although photosynthetic activity was severely suppressed, the effect was reversible, and the cells could rapidly recover from the stress. We suggest that the actual existence and the uncoupling of phycobilisomes may play a specific role not only in photo-, but also in radioprotection, which could be crucial for the early evolution of Life on Earth.


Asunto(s)
Cianobacterias/química , Transferencia de Energía , Ficobilisomas/fisiología , Protectores contra Radiación/química , Origen de la Vida , Fotosíntesis , Ficobiliproteínas/fisiología , Radiación Ionizante , Vuelo Espacial
13.
J Biophotonics ; 11(6): e201700311, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29603883

RESUMEN

Blood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice. We demonstrate that the pairs of Raman peaks at 1355 and1375 cm-1 (symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm-1 and 1602 and 1638 cm-1 (vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount of oxyhemoglobin in venules, arterioles, and capillaries. in vivo measurements of blood oxygenation in the cortex of mice ventilated with inspiratory gas mixtures containing different amounts of oxygen-normoxia, hyperoxia and hypoxia-validate the proposed approach. Our method allows to visualize blood saturation with O2 in different microvascular networks.


Asunto(s)
Encéfalo/metabolismo , Oxígeno/sangre , Oxígeno/metabolismo , Espectrometría Raman , Animales , Hemoglobinas/metabolismo , Masculino , Ratones
14.
PLoS One ; 12(9): e0185170, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28934355

RESUMEN

Raman, NMR and EPR spectroscopy and electrophysiology methods were used to investigate the excitability and the packaging of myelin lipid layers and its viscosity during nerve exposure to pronase E. It was established that during exposure of nerve to pronase E the action potential (AP) conduction velocity and the Schwann cell (SC) (or myelin) water ordering increases, but the nerve myelin refractive index and internode incisions numbers decrease. This effect included two periods-short- and long-time period, probably, because the first one depends on SC protein changes and the second one-on the nerve fiber internode demyelination. It was concluded that high electrical resistance of myelin, which is important for a series of AP conduction velocity, not only depends on nerve fiber diameter and the myelin lipid composition, but also on the regularity of myelin lipid fatty acids and myelin lipid layer packing during the axoglial interaction.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/química , Vaina de Mielina/metabolismo , Fibras Nerviosas/metabolismo , Animales , Carotenoides/química , Carotenoides/metabolismo , Conformación Molecular , Vaina de Mielina/efectos de los fármacos , Fibras Nerviosas/efectos de los fármacos , Fosfolípidos/química , Fosfolípidos/metabolismo , Pronasa/farmacología , Rana temporaria , Viscosidad/efectos de los fármacos
15.
PLoS One ; 12(5): e0178280, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562658

RESUMEN

We investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the analysis of informational structure (ANIS), we propose a model of functioning of cytochrome c. According to this model, conformational rearrangements of the P76GTKMIFA83 loop fragment have a significant effect on conformational mobility of the heme. It is suggested that the conformational mobility of cytochrome c heme is responsible for its optimal orientation with respect to electron donor and acceptor within ubiquinol-cytochrome c oxidoreductase (complex III) and cytochrome c oxidase (complex IV), respectively, thus, ensuring electron transfer from complex III to complex IV. To validate the model, we design several mutant variants of horse cytochrome c with multiple substitutions of amino acid residues in the P76GTKMIFA83 sequence that reduce its ability to undergo conformational rearrangements. With this, we study the succinate-cytochrome c reductase and cytochrome c oxidase activities of rat liver mitoplasts in the presence of mutant variants of cytochrome c. The electron transport activity of the mutant variants decreases to different extent. Resonance Raman spectroscopy (RRS) and surface-enhanced Raman spectroscopy (SERS) data demonstrate, that all mutant cytochromes possess heme with the higher degree of ruffling deformation, than that of the wild-type (WT) cytochrome c. The increase in the ruffled deformation of the heme of oxidized cytochromes correlated with the decrease in the electron transport rate of ubiquinol-cytochrome c reductase (complex III). Besides, all mutant cytochromes have lower mobility of the pyrrol rings and methine bridges, than WT cytochrome c. We show that a decrease in electron transport activity in the mutant variants correlates with conformational changes and reduced mobility of heme porphyrin. This points to a significant role of the P76GTKMIFA83 fragment in the electron transport function of cytochrome c.


Asunto(s)
Citocromos c/metabolismo , Microsomas Hepáticos/enzimología , Sustitución de Aminoácidos , Animales , Citocromos c/química , Citocromos c/genética , Caballos , Mutación , Ratas
16.
PLoS One ; 11(7): e0158083, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27455410

RESUMEN

In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh) regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC) acetylcholine receptors (AChRs) and the axon excitation (different intervals between action potentials (APs)). Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the "axon-SC" interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+-influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization.


Asunto(s)
Vaina de Mielina/metabolismo , Receptores Colinérgicos/metabolismo , Células de Schwann/metabolismo , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Anuros , Axones , Marcaje Isotópico , Lípidos/química , Masculino , Vaina de Mielina/química , Fibras Nerviosas Mielínicas/química , Fibras Nerviosas Mielínicas/metabolismo , Nervios Periféricos , Unión Proteica , Espectrometría Raman
17.
Cell Physiol Biochem ; 39(1): 81-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27322642

RESUMEN

BACKGROUND/AIMS: ATP release from erythrocyte plays a key role in hypoxia-induced elevation of blood flow in systematic circulation. We have previously shown that hemolysis contributes to erythrocyte ATP release triggered by several stimuli, including hypoxia, but the molecular mechanisms of hypoxia-increased membrane fragility remain unknown. METHODS: In this study, we compared the action of hypoxia on hemolysis, ATP release and the composition of membrane-bound proteins in human erythrocytes. RESULTS: Twenty minutes incubation of human erythrocytes in the oxygen-free environment increased the content of extracellular hemoglobin by ∼1.5 fold. Paired measurements of hemoglobin and ATP content in the same samples, showed a positive correlation between hemolysis and ATP release. Comparative analysis of SDS-PAGE electrophoresis of erythrocyte ghosts obtained under control and deoxygenated conditions revealed a ∼2-fold elevation of the content of membrane-bound protein with Mr of ∼60 kDa. CONCLUSION: Deoxygenation of human erythrocytes affects composition of membrane-bound proteins. Additional experiments should be performed to identify the molecular origin of 60 kDa protein and its role in the attenuation of erythrocyte integrity and ATP release in hypoxic conditions.


Asunto(s)
Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Proteínas de la Membrana/metabolismo , Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Hipoxia de la Célula , Electroforesis en Gel de Poliacrilamida , Membrana Eritrocítica/metabolismo , Femenino , Hemólisis , Humanos , Modelos Lineales , Masculino , Factores de Tiempo , Adulto Joven
18.
Sci Rep ; 5: 13793, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26346634

RESUMEN

Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman scattering due to high concentration of electric near-field and large contact area between mitochondria and nanostructured surfaces.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Mitocondrias/metabolismo , Espectrometría Raman , Adenosina Trifosfato/biosíntesis , Animales , Transporte de Electrón , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/metabolismo , Protones , Ratas , Espectrometría Raman/métodos
19.
Biochim Biophys Acta ; 1848(10 Pt A): 2337-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26171817

RESUMEN

Recently we found that cytoplasm of permeabilized mammalian cells behaves as a hydrogel displaying intrinsic osmosensitivity. This study examined the role of microfilaments and microtubules in the regulation of hydrogel osmosensitivity, volume-sensitive ion transporters, and their contribution to volume modulation of intact cells. We found that intact and digitonin-permeabilized A549 cells displayed similar rate of shrinkage triggered by hyperosmotic medium. It was significantly slowed-down in both cell preparations after disruption of actin microfilaments by cytochalasin B, suggesting that rapid water release by intact cytoplasmic hydrogel contributes to hyperosmotic shrinkage. In hyposmotic swelling experiments, disruption of microtubules by vinblastine attenuated the maximal amplitude of swelling in intact cells and completely abolished it in permeabilized cells. The swelling of intact cells also triggered ~10-fold elevation of furosemide-resistant (86)Rb+ (K+) permeability and the regulatory volume decrease (RVD), both of which were abolished by Ba2+. Interestingly, RVD and K+ permeability remained unaffected in cytocholasin/vinblastine treated cells demonstrating that cytoskeleton disruption has no direct impact on Ba2+-sensitive K+-channels involved in RVD. Our results show, for the first time, that the cytoskeleton network contributes directly to passive cell volume adjustments in anisosmotic media via the modulation of the water retained by the cytoplasmic hydrogel.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Citoesqueleto/patología , Digitonina/farmacología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Línea Celular Tumoral , Citoesqueleto/efectos de los fármacos , Humanos , Presión Osmótica
20.
PeerJ ; 3: e1055, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26137433

RESUMEN

The aim of our study was to examine the effects of 12-month therapy with recombinant growth hormone (rGH) on the blood antioxidant system in children with growth hormone deficiency (GHD). Total antioxidant capacity (TAC) of plasma was measured by FRAP (ferric reducing antioxidant power or ferric reducing ability of plasma); activities of superoxide dismutase (SOD) and catalase (CAT) in erythrocytes were assessed; non-protein thiols (NT) and ceruloplasmin (CP) levels were also measured. These parameters were determined before and after 12 month of rGH treatment. Eleven treatment-naive prepubertal children with growth hormone deficiency were included in the study. Another 11 prepubertal children comprised a control group. Before rGH treatment, TAC of plasma and NT level in the control group were significantly lower (726 ± 196 vs. 525 ± 166 µmol/L, P = 0.0182 and 0.92 ± 0.18 vs. 0.70 ± 0.22 µmol/ml, P = 0.0319, before and after the therapy, respectively). The only parameter that significantly (19.6 ± 4.7 vs. 14.5 ± 3.4 Units/g Hb, P = 0.0396) exceeded the same in the control group after rGH therapy was SOD activity. However, none of the measured parameters of antioxidant system in GHD children, except for TAC (525 ± 166 vs. 658 ± 115 µmol/L, P = 0.0205), exhibited significant improvement toward the end of the 12-month treatment period, although non-significant changes in CAT activity and CP level were also observed. This work has demonstrated that some parameters of the blood antioxidant system are out of balance and even impaired in GHD children. A 12-month treatment with rGH resulted in a partial improvement of the antioxidant system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA