Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Biomed Pharmacother ; 174: 116520, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581924

RESUMEN

A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.


Asunto(s)
Compuestos de Bencidrilo , Dieta Alta en Grasa , Glucósidos , Hígado , Ratas Endogámicas SHR , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Glucósidos/farmacología , Compuestos de Bencidrilo/farmacología , Masculino , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratas , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Cardiotónicos/farmacología , Presión Sanguínea/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hígado Graso/prevención & control , Hígado Graso/tratamiento farmacológico , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Sustancias Protectoras/farmacología , Hipertensión/tratamiento farmacológico
2.
BMC Cardiovasc Disord ; 24(1): 211, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627621

RESUMEN

BACKGROUND: C-reactive protein (CRP) is an acute inflammatory protein detected in obese patients with metabolic syndrome. Moreover, increased CRP levels have been linked with atherosclerotic disease, congestive heart failure, and ischemic heart disease, suggesting that it is not only a biomarker but also plays an active role in the pathophysiology of cardiovascular diseases. Since endothelial dysfunction plays an essential role in various cardiovascular pathologies and is characterized by increased expression of cell adhesion molecules and inflammatory markers, we aimed to detect specific markers of endothelial dysfunction, inflammation, and oxidative stress in spontaneously hypertensive rats (SHR) expressing human CRP. This model is genetically predisposed to the development of the metabolic syndrome. METHODS: Transgenic SHR male rats (SHR-CRP) and non-transgenic SHR (SHR) at the age of 8 months were used. Metabolic profile (including serum and tissue triglyceride (TAG), serum insulin concentrations, insulin-stimulated incorporation of glucose, and serum non-esterified fatty acids (NEFA) levels) was measured. In addition, human serum CRP, MCP-1 (monocyte chemoattractant protein-1), and adiponectin were evaluated by means of ELISA, histological analysis was used to study morphological changes in the aorta, and western blot analysis of aortic tissue was performed to detect expression of endothelial, inflammatory, and oxidative stress markers. RESULTS: The presence of human CRP was associated with significantly decreased insulin-stimulated glycogenesis in skeletal muscle, increased muscle and hepatic accumulation of TAG and decreased plasmatic cGMP concentrations, reduced adiponectin levels, and increased monocyte chemoattractant protein-1 (MCP-1) levels in the blood, suggesting pro-inflammatory and presence of multiple features of metabolic syndrome in SHR-CRP animals. Histological analysis of aortic sections did not reveal any visible morphological changes in animals from both SHR and SHR-CRP rats. Western blot analysis of the expression of proteins related to the proper function of endothelium demonstrated significant differences in the expression of p-eNOS/eNOS in the aorta, although endoglin (ENG) protein expression remained unaffected. In addition, the presence of human CRP in SHR in this study did not affect the expression of inflammatory markers, namely p-NFkB, P-selectin, and COX2 in the aorta. On the other hand, biomarkers related to oxidative stress, such as HO-1 and SOD3, were significantly changed, indicating the induction of oxidative stress. CONCLUSIONS: Our findings demonstrate that CRP alone cannot fully induce the expression of endothelial dysfunction biomarkers, suggesting other risk factors of cardiovascular disorders are necessary to be involved to induce endothelial dysfunction with CRP.


Asunto(s)
Hipertensión , Insulinas , Síndrome Metabólico , Animales , Humanos , Masculino , Ratas , Adiponectina , Aorta , Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , Quimiocina CCL2 , Inflamación , Insulinas/metabolismo , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/genética , Estrés Oxidativo , Ratas Endogámicas SHR
3.
Colloids Surf B Biointerfaces ; 235: 113791, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335769

RESUMEN

Magnetic nanoparticles (MNPs) modified with tannic acid (TA) have shown remarkable success as an antioxidant and antimicrobial therapeutic agent. Herein, we report a synthetic procedure for the preparation of silica-coated MNPs modified with N-acetylcysteine-modified chitosan and TA. This was achieved by free-radical grafting of NAC onto chitosan (CS), a layer-by-layer technique for modifying negatively charged MNP@SiO2 nanoparticles with positively charged CS-NAC, and crosslinking CS with TA. The antioxidant and metabolic effects of MNP@SiO2-CS-NAC and MNP@SiO2-CS-NAC-TA nanoparticles were tested in a model of prediabetic rats with hepatic steatosis, the hereditary hypertriglyceridemic rats (HHTg). The particles exhibited significant antioxidant properties in the liver, increasing the activity of the antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx), decreasing the concentration of the lipoperoxidation product malondialdehyde (MDA), and improving the antioxidant status determined as the ratio of reduced to oxidized glutathione; in particular, TA increased some antioxidant parameters. MNPs carrying antioxidants such as NAC and TA could thus represent a promising therapeutic agent for the treatment of various diseases accompanied by increased oxidative stress.


Asunto(s)
Quitosano , Nanopartículas de Magnetita , Polifenoles , Estado Prediabético , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Acetilcisteína/farmacología , Quitosano/farmacología , Estado Prediabético/metabolismo , Dióxido de Silicio/farmacología , Glutatión/metabolismo , Ratas Wistar , Estrés Oxidativo , Hígado , Superóxido Dismutasa/metabolismo
4.
Physiol Genomics ; 56(1): 65-73, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955133

RESUMEN

Recently, we have identified a recessive mutation, an abnormal coat appearance in the BXH6 strain, a member of the HXB/BXH set of recombinant inbred (RI) strains. The RI strains were derived from the spontaneously hypertensive rat (SHR) and Brown Norway rat (BN-Lx) progenitors. Whole genome sequencing of the mutant rats identified the 195875980 G/A mutation in the tuftelin 1 (Tuft1) gene on chromosome 2, which resulted in a premature stop codon. Compared with wild-type BXH6 rats, BXH6-Tuft1 mutant rats exhibited lower body weight due to reduced visceral fat and ectopic fat accumulation in the liver and heart. Reduced adiposity was associated with decreased serum glucose and insulin and increased insulin-stimulated glycogenesis in skeletal muscle. In addition, mutant rats had lower serum monocyte chemoattractant protein-1 and leptin levels, indicative of reduced inflammation. Analysis of the liver proteome identified differentially expressed proteins from fatty acid metabolism and ß-oxidation, peroxisomes, carbohydrate metabolism, inflammation, and proteasome pathways. These results provide evidence for the important role of the Tuft1 gene in the regulation of lipid and glucose metabolism and suggest underlying molecular mechanisms.NEW & NOTEWORTHY A new spontaneous mutation, abnormal hair appearance in the rat, has been identified as a nonfunctional tuftelin 1 (Tuft1) gene. The pleiotropic effects of this mutation regulate glucose and lipid metabolism. Analysis of the liver proteome revealed possible molecular mechanisms for the metabolic effects of the Tuft1 gene.


Asunto(s)
Codón sin Sentido , Glucosa , Ratas , Animales , Glucosa/metabolismo , Codón sin Sentido/genética , Metabolismo de los Lípidos/genética , Proteoma/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas BN , Insulina/metabolismo , Inflamación
5.
J Environ Manage ; 344: 118475, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406491

RESUMEN

Second generation biofuel crop Miscanthus x giganteus (Mxg) was studied as a candidate for petroleum hydrocarbons (PHs) contaminated soil phytomanagement. The soil was polluted by diesel in wide concentration gradient up to 50 g⋅kg-1 in an ex-situ pot experiment. The contaminated soil/plant interactions were investigated using plant biometric and physiological parameters, soil physico-chemical and microbial community's characteristics. The plant parameters and chlorophyll fluorescence indicators showed an inhibitory effect of diesel contamination; however much lower than expected from previously published results. Moreover, lower PHs concentrations (5 and 10 g⋅kg-1) resulted in positive reinforcement of electron transport as a result of hormesis effect. The soil pH did not change significantly during the vegetation season. The decrease of total organic carbon was significantly lower in planted pots. Soil respiration and dehydrogenases activity increased with the increasing contamination indicating ongoing PHs biodegradation. In addition, microbial biomass estimated by phospholipid fatty acids increased only at higher PHs concentrations. Higher dehydrogenases values were obtained in planted pots compared to unplanted. PHs degradation followed the first-order kinetics and for the middle range of contamination (10-40 g⋅kg-1) significantly lower PHs half-lives were determined in planted than unplanted soil pointing on phytoremediation. Diesel degradation was in range 35-70 % according to pot variant. Results confirmed the potential of Mxg for diesel contaminated soils phytomanagement mainly in PHs concentrations up to 20 g⋅kg-1 where phytoremediation was proved, and biomass yield was reduced only by 29 %.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Poaceae/metabolismo , Plantas/metabolismo , Hidrocarburos/metabolismo , Suelo , Oxidorreductasas/metabolismo
6.
Front Pharmacol ; 14: 1117683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077818

RESUMEN

Background and aims: Low-grade chronic inflammation plays an important role in the pathogenesis of metabolic syndrome, type 2 diabetes and their complications. In this study, we investigated the effects of salsalate, a non-steroidal anti-inflammatory drug, on metabolic disturbances in an animal model of prediabetes-a strain of non-obese hereditary hypertriglyceridemic (HHTg) rats. Materials and Methods: Adult male HHTg and Wistar control rats were fed a standard diet without or with salsalate delivering a daily dose of 200 mg/kg of body weight for 6 weeks. Tissue sensitivity to insulin action was measured ex vivo according to basal and insulin-stimulated 14C-U-glucose incorporation into muscle glycogen or adipose tissue lipids. The concentration of methylglyoxal and glutathione was determined using the HPLC-method. Gene expression was measured by quantitative RT-PCR. Results: Salsalate treatment of HHTg rats when compared to their untreated controls was associated with significant amelioration of inflammation, dyslipidemia and insulin resistance. Specificaly, salsalate treatment was associated with reduced inflammation, oxidative and dicarbonyl stress when inflammatory markers, lipoperoxidation products and methylglyoxal levels were significantly decreased in serum and tissues. In addition, salsalate ameliorated glycaemia and reduced serum lipid concentrations. Insulin sensitivity in visceral adipose tissue and skeletal muscle was significantly increased after salsalate administration. Further, salsalate markedly reduced hepatic lipid accumulation (triglycerides -29% and cholesterol -14%). Hypolipidemic effects of salsalate were associated with differential expression of genes coding for enzymes and transcription factors involved in lipid synthesis (Fas, Hmgcr), oxidation (Pparα) and transport (Ldlr, Abc transporters), as well as changes in gene expression of cytochrome P450 proteins, in particular decreased Cyp7a and increased Cyp4a isoforms. Conclusion: These results demonstrate important anti-inflammatory and anti-oxidative effects of salsalate that were associated with reduced dyslipidemia and insulin resistance in HHTg rats. Hypolipidemic effects of salsalate were associated with differential expression of genes regulating lipid metabolism in the liver. These results suggest potential beneficial use of salsalate in prediabetic patients with NAFLD symptoms.

7.
PLoS One ; 18(4): e0283276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37053180

RESUMEN

Thermogenesis in brown adipose tissue (BAT) uses intracellular triglycerides, circulating free fatty acids and glucose as the main substrates. The objective of the current study was to analyse the role of CD36 fatty acid translocase in regulation of glucose and fatty acid utilisation in BAT. BAT isolated from spontaneously hypertensive rat (SHR) with mutant Cd36 gene and SHR-Cd36 transgenic rats with wild type variant was incubated in media containing labeled glucose and palmitate to measure substrate incorporation and oxidation. SHR-Cd36 versus SHR rats showed significantly increased glucose incorporation into intracellular lipids associated with reduced glycogen synthase kinase 3ß (GSK-3ß) protein expression and phosphorylation and increased oxidation of exogenous palmitate. It can be concluded that CD36 enhances glucose transport for lipogenesis in BAT by suppressing GSK-3ß and promotes direct palmitate oxidation.


Asunto(s)
Tejido Adiposo Pardo , Antígenos CD36 , Animales , Ratas , Tejido Adiposo Pardo/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Palmitatos/metabolismo , Ratas Endogámicas SHR , Ratas Transgénicas
8.
Metabolites ; 13(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36837811

RESUMEN

Recently, red beetroot has attracted attention as a health-promoting functional food. Studies have shown that beetroot administration can reduce blood pressure and ameliorate parameters of glucose and lipid metabolism; however, mechanisms underlying these beneficial effects of beetroot are not yet fully understood. In the current study, we analysed the effects of beetroot on parameters of glucose and lipid metabolism in two models of metabolic syndrome: (i) transgenic spontaneously hypertensive rats expressing human C-reactive protein (SHR-CRP rats), and (ii) hereditary hypertriglyceridemic (HHTg) rats. Treatment with beetroot juice for 4 weeks was, in both models, associated with amelioration of oxidative stress, reduced circulating lipids, smaller visceral fat depots, and lower ectopic fat accumulation in the liver compared to the respective untreated controls. On the other hand, beetroot treatment had no significant effects on the sensitivity of the muscle and adipose tissue to insulin action in either model. Analyses of hepatic proteome revealed significantly deregulated proteins involved in glycerophospholipid metabolism, mTOR signalling, inflammation, and cytoskeleton rearrangement.

9.
Mar Drugs ; 20(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36547928

RESUMEN

The unicellular green microalga Dunaliella is a potential source of a wide range of nutritionally important compounds applicable to the food industry. The aim of this study was to assess the effect of Dunaliella salina dried biomass on the growth and adherence of 10 strains of Lactobacillus, Lacticaseibacillus, and Bifidobacterium. The immunomodulatory, antioxidant, and cytotoxic effects of D. salina on human peripheral mononuclear cells and simulated intestinal epithelial cell lines Caco-2 and HT-29 were evaluated. Furthermore, the hypocholesterolemic effects of the microalgae on lipid metabolism in rats fed a high-fat diet were analyzed. The addition of D. salina biomass had a positive effect on the growth of nine out of 10 probiotics and promoted the adherence of three bifidobacteria strains to human cell lines. The antioxidant and immunomodulatory properties of D. salina were concentration-dependent. The inflammatory cytokines (TNF-α and IL-6) were significantly increased following Dunaliella stimulation at the lowest concentration (0.5% w/v). Eight week supplementation of D. salina to the diet of hypercholesteromic rats significantly decreased the serum concentrations of LDL-C, VLDL, IDL-B, and IDL-C. D. salina is not cytotoxic in intestinal cell models; it promotes adherence of selected bifidobacteria, it affords immunomodulatory and antioxidant effects, and its addition to diets may help decrease atherosclerosis risk factors.


Asunto(s)
Chlorophyceae , Microalgas , Humanos , Animales , Ratas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células CACO-2 , Biomasa , Microalgas/metabolismo
10.
Sci Rep ; 12(1): 19896, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400817

RESUMEN

Plant extracellular vesicles (pEVs) derived from numerous edible sources gain a lot of attention in recent years, mainly due to the potential to efficiently carry bioactive molecules into mammalian cells. In the present study, we focus on isolation of PDNVs (plant-derived nanovesicles) and pEVs from callus culture and from BY-2 culture of Nicotiana tabacum (tobacco). Tobacco was selected as a source of plant vesicles, as it is commonly used by human, moreover it is a model organism with established techniques for cultivation of explant cultures in vitro. Explant cultures are suitable for the isolation of pEVs in large quantities, due to their fast growth in sterile conditions. As the efficiency of isolation methods varies, we were comparing two methods of isolation. We evaluated biophysical and biochemical properties of plant vesicles, as well as differences between isolates. We encountered difficulties in the form of vesicles aggregation, which is often described in publications focused on mammalian nanovesicles. In an effort to prevent vesicle aggregation, we used trehalose in different stages of isolation. We show tobacco-derived vesicles successfully enter tobacco and mesenchymal cell lines. We observed that tobacco-nanovesicles isolated by different methods incorporated fluorescent dye with different efficiency. The results of our study show tobacco-derived vesicles isolated by various isolation methods are able to enter plant, as well as mammalian cells.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Ratas , Animales , Nicotiana , Vesículas Extracelulares/metabolismo , Plantas/metabolismo , Transporte Biológico , Mamíferos
11.
Front Nutr ; 9: 952065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245490

RESUMEN

Quercetin, a flavonoid present in many fruits and vegetables, exhibits beneficial effects toward abnormalities related to metabolic syndrome. In this study, to further investigate metabolic and transcriptomic responses to quercetin supplementation, we used a genetic model of metabolic syndrome. Adult male rats of the PD/Cub strain were fed either a high-sucrose diet (HSD; control PD rats) or HSD fortified with quercetin (10 g quercetin/kg diet; PD-Q rats). Morphometric and metabolic parameters, along with transcriptomic profiles of the liver and retroperitoneal fat, were assessed. The relative weights of epididymal and retroperitoneal fat were significantly decreased in quercetin-treated animals. Furthermore, a smaller area under the glycemic curve along with a decreased level of fasting insulin were detected in PD-Q rats. While no changes in total cholesterol levels were observed, the overall level of triglycerides decreased in the serum and the liver of the PD-Q rats. The transcriptomic profile of the liver and the adipose tissue corroborated the metabolic and morphometric findings, revealing the pattern consistent with insulin-sensitizing changes, with major regulator nodes being Pparg, Adipoq, Nos2, and Mir378. In conclusion, quercetin supplementation improves abnormalities related to metabolic syndrome, namely adiposity, dyslipidemia and glucose intolerance.

12.
Biomedicines ; 10(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36140169

RESUMEN

Gliflozins (inhibitors of sodium-glucose cotransporter 2) show many beneficial actions beyond their antidiabetic effects. The underlying mechanisms of these additional protective effects are still not well understood, especially under non-diabetic conditions. Therefore, we analyzed the effects of empagliflozin in young (3-month-old) and adult (12-month-old) male spontaneously hypertensive rats (SHR) expressing human C-reactive protein (CRP) in the liver. SHR-CRP rats are a non-diabetic model of metabolic syndrome, inflammation, and organ damage. Empagliflozin was given in a daily dose of 10 mg/kg body weight for 8 weeks. Both age groups of SHR-CRP rats treated with empagliflozin had lower body weight, decreased weight of fat depots, reduced ectopic fat accumulation in the liver and kidneys, and decreased levels of plasma insulin and ß-hydroxybutyrate. Empagliflozin effectively reduced ectopic renal fat accumulation, and was associated with decreased inflammation. Exclusively in young rats, decreased microalbuminuria after empagliflozin treatment was accompanied by attenuated oxidative stress. In adult animals, empagliflozin also improved left ventricle function. In conclusion, in young animals, the beneficial renoprotective effects of empagliflozin could be ascribed to reduced lipid deposition in the kidney and the attenuation of oxidative stress and inflammation. In contrast, hepatic lipid metabolism was ameliorated in adult rats.

13.
J Diabetes Res ; 2022: 4587907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147256

RESUMEN

Introduction: Monounsaturated fatty acids (MUFA) are understood to have therapeutic and preventive effects on chronic complications associated with type 2 diabetes mellitus (T2DM); however, there are differences between individual MUFAs. Although the effects of palmitoleic acid (POA) are still debated, POA can regulate glucose homeostasis, lipid metabolism, and cytokine production, thus improving metabolic disorders. In this study, we investigated and compared the metabolic effects of POA and oleic acid (OA) supplementation on glucose and lipid metabolism, insulin sensitivity, and inflammation in a prediabetic model, the hereditary hypertriglyceridemic rat (HHTg). HHTg rats exhibiting genetically determined hypertriglyceridemia, insulin resistance, and impaired glucose tolerance were fed a standard diet. POA and OA were each administered intragastrically at a dose of 100 mg/kg b.wt. for four weeks. Results: Supplementation with both MUFAs significantly elevated insulin and glucagon levels, but only POA decreased nonfasting glucose. POA-treated rats showed elevated circulating NEFA associated with increased lipolysis, lipoprotein lipase gene expression, and fatty acid reesterification in visceral adipose tissue (VAT). The mechanism of improved insulin sensitivity of peripheral tissues (measured as insulin-stimulated lipogenesis and glycogenesis) in POA-treated HHTg rats could contribute increased circulating adiponectin and omentin levels together with elevated FADS1 gene expression in VAT. POA-supplemented rats exhibited markedly decreased proinflammatory cytokine production by VAT, which can alleviate chronic inflammation. OA-supplemented rats exhibited decreased arachidonic acid (AA) profiles and decreased proinflammatory AA-derived metabolites (20-HETE) in membrane phospholipids of peripheral tissues. Slightly increased FADS1 gene expression after OA along with increased adiponectin production by VAT was reflected in slightly ameliorated adipose tissue insulin sensitivity (increased insulin-stimulated lipogenesis). Conclusions: Our results show that POA served as a lipokine, ameliorating insulin sensitivity in peripheral tissue and markedly modulating the metabolic activity of VAT including cytokine secretion. OA had a beneficial effect on lipid metabolism and improved inflammation by modulating AA metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Estado Prediabético , Adiponectina , Animales , Antiinflamatorios , Ácidos Araquidónicos , Citocinas , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Monoinsaturados/uso terapéutico , Ácidos Grasos no Esterificados , Glucagón , Glucosa/metabolismo , Inflamación , Insulina/metabolismo , Lipoproteína Lipasa , Ácido Oléico/farmacología , Estado Prediabético/tratamiento farmacológico , Ratas
14.
Nutrients ; 14(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36014934

RESUMEN

Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a limited segment of rat chromosome 20 from a metabolic syndrome model, spontaneously hypertensive rat (SHR), was introgressed into Brown Norway (BN) genomic background. We mapped the extent of the differential segment and compared the genomic sequences of BN vs. SHR within the segment in silico. The differential segment of SHR origin in BN.SHR20 spans about 9 Mb of the telomeric portion of the short arm of chromosome 20. We identified non-synonymous mutations e.g., in ApoM, Notch4, Slc39a7, Smim29 genes and other variations in or near genes associated with metabolic syndrome in human genome-wide association studies. Male rats of BN and BN.SHR20 strains were fed a standard diet for 18 weeks (control groups) or 16 weeks of standard diet followed by 14 days of high-sucrose diet (HSD). We assessed the morphometric and metabolic profiles of all groups. Adiposity significantly increased only in BN.SHR20 after HSD. Fasting glycemia and the glucose levels during the oral glucose tolerance test were higher in BN.SHR20 than in BN groups, while insulin levels were comparable. The fasting levels of triacylglycerols were the highest in sucrose-fed BN.SHR20, both compared to the sucrose-fed BN and the control BN.SHR20. The non-esterified fatty acids and total cholesterol concentrations were higher in BN.SHR20 compared to their respective BN groups, and the HSD elicited an increase in non-esterified fatty acids only in BN.SHR20. In a new genetically defined model, we have isolated a limited genomic region involved in nutrigenetic sensitization to sucrose-induced metabolic disturbances.


Asunto(s)
Proteínas de Transporte de Catión , Hipertensión , Síndrome Metabólico , Animales , Apolipoproteínas M/genética , Proteínas de Transporte de Catión/genética , Cromosomas Humanos Par 20/metabolismo , Ayuno , Ácidos Grasos , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/metabolismo , Masculino , Mamíferos/genética , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Nutrigenómica , Ratas , Ratas Endogámicas BN , Ratas Endogámicas SHR , Sacarosa/efectos adversos
15.
Curr Issues Mol Biol ; 44(5): 1889-1900, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35678658

RESUMEN

The efficacy of fenofibrate in the treatment of hepatic steatosis has not been clearly demonstrated. In this study, we investigated the effects of fenofibrate and silymarin, administered as monotherapy and in combination to existing hepatic steatosis in a unique strain of hereditary hypertriglyceridemic rats (HHTg), a non-obese model of metabolic syndrome. HHTg rats were fed a standard diet without or with fenofibrate (100 mg/kg b.wt./day) or with silymarin (1%) or with a combination of fenofibrate with silymarin for four weeks. Fenofibrate alone and in combination with silymarin decreased serum and liver triglycerides and cholesterol and increased HDL cholesterol. These effects were associated with the decreased gene expression of enzymes involved in lipid synthesis and transport, while enzymes of lipid conversion were upregulated. The combination treatment had a beneficial effect on the gene expression of hepatic cytochrome P450 (CYP) enzymes. The expression of the CYP2E1 enzyme, which is source of hepatic reactive oxygen species, was reduced. In addition, fenofibrate-induced increased CYP4A1 expression was decreased, suggesting a reduction in the pro-inflammatory effects of fenofibrate. These results show high efficacy and mechanisms of action of the combination of fenofibrate with silymarin in treating hepatic steatosis and indicate the possibility of protection against disorders in which oxidative stress and inflammation are involved.

16.
PLoS Genet ; 18(4): e1009638, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377872

RESUMEN

Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2+/- mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia.


Asunto(s)
Glucosa , Neurogénesis , Animales , Humanos , Ratas , Glucosa/genética , Glucosa/metabolismo , Hipocampo/metabolismo , Neurogénesis/genética , Fenotipo , Ratas Endogámicas BN , Ratas Endogámicas SHR
17.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269970

RESUMEN

BACKGROUND: If menopause is really independent risk factor for cardiovascular disease is still under debate. We studied if ovariectomy in the model of insulin resistance causes cardiovascular changes, to what extent are these changes reversible by estradiol substitution and if they are accompanied by changes in other organs and tissues. METHODS: Hereditary hypertriglyceridemic female rats were divided into three groups: ovariectomized at 8th week (n = 6), ovariectomized with 17-ß estradiol substitution (n = 6), and the sham group (n = 5). The strain of abdominal aorta measured by ultrasound, expression of vascular genes, weight and content of myocardium and also non-cardiac parameters were analyzed. RESULTS: After ovariectomy, the strain of abdominal aorta, expression of nitric oxide synthase in abdominal aorta, relative weight of myocardium and of the left ventricle and circulating interleukin-6 decreased; these changes were reversed by estradiol substitution. Interestingly, the content of triglycerides in myocardium did not change after ovariectomy, but significantly increased after estradiol substitution while adiposity index did not change after ovariectomy, but significantly decreased after estradiol substitution. CONCLUSION: Vascular and cardiac parameters under study differed in their response to ovariectomy and estradiol substitution. This indicates different effects of ovariectomy and estradiol on different cardiovascular but also extracardiac structures.


Asunto(s)
Estradiol , Resistencia a la Insulina , Animales , Femenino , Corazón , Humanos , Resistencia a la Insulina/fisiología , Menopausia/metabolismo , Ovariectomía/efectos adversos , Ratas
18.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768942

RESUMEN

Recent studies suggest that treatment with SGLT-2 inhibitors can reduce hepatic lipid storage and ameliorate non-alcoholic fatty liver disease (NAFLD) development beyond their glycemic benefits. However, the exact mechanism involved is still unclear. We investigated the hepatic metabolic effect of empagliflozin (10 mg/kg/day for eight weeks) on the development of NAFLD and its complications using HHTg rats as a non-obese prediabetic rat model. Empagliflozin treatment reduced neutral triacylglycerols and lipotoxic diacylglycerols in the liver and was accompanied by significant changes in relative mRNA expression of lipogenic enzymes (Scd-1, Fas) and transcription factors (Srebp1, Pparγ). In addition, alterations in the gene expression of cytochrome P450 proteins, particularly Cyp2e1 and Cyp4a, together with increased Nrf2, contributed to the improvement of hepatic lipid metabolism after empagliflozin administration. Decreased circulating levels of fetuin-A improved lipid metabolism and attenuated insulin resistance in the liver and in peripheral tissues. Our results highlight the beneficial effect of empagliflozin on hepatic lipid metabolism and lipid accumulation independent of obesity, with the mechanisms understood to involve decreased lipogenesis, alterations in cytochrome P450 proteins, and decreased fetuin-A. These changes help to alleviate NAFLD symptoms in the early phase of the disease and before the onset of diabetes.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hiperlipoproteinemia Tipo IV/complicaciones , Hiperlipoproteinemia Tipo IV/tratamiento farmacológico , Hiperlipoproteinemia Tipo IV/metabolismo , Mediadores de Inflamación/metabolismo , Resistencia a la Insulina , Masculino , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Obesidad/complicaciones , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estado Prediabético/complicaciones , Ratas , Ratas Mutantes , Ratas Wistar
19.
Biomed Pharmacother ; 144: 112246, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34601191

RESUMEN

The new antidiabetic drugs, gliflozins, inhibit sodium-glucose transporter-2 in renal proximal tubules promoting glucose and sodium excretion. This leads not only to a significant improvement of glucose control but also to the reduction of blood pressure and body weight in both diabetic patients and experimental models. We examined whether these beneficial effects can also be achieved in a non-diabetic hypertensive model, namely in Ren-2 transgenic rats (TGR). Adult 6-month-old hypertensive TGR and their normotensive controls (Hannover Sprague-Dawley rats), were either untreated or treated with empagliflozin (10 mg/kg/day) for two months. Telemetric blood pressure monitoring, renal parameters as well as cardiac function via echocardiography were analyzed during the experiment. At the end of the study, the contribution of major vasoactive systems to blood pressure maintenance was studied. Metabolic parameters and markers of oxidative stress and inflammation were also analyzed. Empagliflozin had no effect on plasma glucose level but partially reduced blood pressure in TGR. Although food consumption was substantially higher in empagliflozin-treated TGR compared to the untreated animals, their body weight and the amount of epididymal and perirenal fat was decreased. Empagliflozin had no effect on proteinuria, but it decreased plasma urea, attenuated renal oxidative stress and temporarily increased urinary urea excretion. Several metabolic (hepatic triglycerides, non-esterified fatty acids, insulin) and inflammatory (TNF-α, leptin) parameters were also improved by empagliflozin treatment. By contrast, echocardiography did not reveal any effect of empagliflozin on cardiac function. In conclusion, empagliflozin exerted beneficial antihypertensive, anti-inflammatory and metabolic effects also in a non-diabetic hypertensive model.


Asunto(s)
Antihipertensivos/farmacología , Compuestos de Bencidrilo/farmacología , Presión Sanguínea/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glucósidos/farmacología , Hipertensión/tratamiento farmacológico , Adiposidad/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratas Sprague-Dawley , Ratas Transgénicas , Renina/genética , Pérdida de Peso/efectos de los fármacos
20.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638943

RESUMEN

(1) Background: empagliflozin, sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is an effective antidiabetic agent with strong cardio- and nephroprotective properties. The mechanisms behind its cardio- and nephroprotection are still not fully clarified. (2) Methods: we used male hereditary hypertriglyceridemic (hHTG) rats, a non-obese model of dyslipidaemia, insulin resistance, and endothelial dysfunction fed standard diet with or without empagliflozin for six weeks to explore the molecular mechanisms of empagliflozin effects. Nuclear magnetic resonance (NMR)-based metabolomics; quantitative PCR of relevant genes involved in lipid and glucose metabolism, or senescence; glucose and palmitic acid oxidation in isolated tissues and cell lines of adipocytes and hepatocytes were used. (3) Results: empagliflozin inhibited weight gain and decreased adipose tissue weight, fasting blood glucose, and triglycerides and increased HDL-cholesterol. It also improved insulin sensitivity in white fat. NMR spectroscopy identified higher plasma concentrations of ketone bodies, ketogenic amino acid leucine and decreased levels of pyruvate and alanine. In the liver, adipose tissue and kidney, empagliflozin up-regulated expression of genes involved in gluconeogenesis and down-regulated expression of genes involved in lipogenesis along with reduction of markers of inflammation, oxidative stress and cell senescence. (4) Conclusion: multiple positive effects of empagliflozin, including reduced cell senescence and oxidative stress, could contribute to its long-term cardio- and nephroprotective actions.


Asunto(s)
Tejido Adiposo/metabolismo , Compuestos de Bencidrilo/administración & dosificación , Senescencia Celular/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Glucósidos/administración & dosificación , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/metabolismo , Hipoglucemiantes/administración & dosificación , Riñón/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Células 3T3-L1 , Administración Oral , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Dislipidemias/tratamiento farmacológico , Gluconeogénesis/genética , Células Hep G2 , Humanos , Resistencia a la Insulina , Lipogénesis/genética , Masculino , Ratones , Ratas , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA