Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 8(6): e66669, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23805258

RESUMEN

Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca(2+)-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca(2+) signaling since Ca(2+)- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Cinesinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Unión a Calmodulina/química , Proteínas de Unión a Calmodulina/genética , Cristalografía por Rayos X , Dimerización , Cinesinas/química , Microscopía de Interferencia , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ultracentrifugación
2.
Proc Natl Acad Sci U S A ; 106(20): 8175-9, 2009 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-19416847

RESUMEN

Much of the transport, tension, and movement in mitosis depends on kinesins, the ATP-powered microtubule-based motors. We report the crystal structure of a kinesin complex, the mitotic kinesin KCBP bound to its principal regulator KIC. Shown to be a Ca(2+) sensor, KIC works as an allosteric trap. Extensive intermolecular interactions with KIC stabilize kinesin in its ADP-bound conformation. A critical component of the kinesin motile mechanism, called the neck mimic, switches its association from kinesin to KIC, stalling the motor. KIC denies access of the motor to its track by steric interference. Two major features of this regulation, allosteric trapping and steric blocking, are likely to be general for all kinesins.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Unión al Calcio/química , Proteínas de Unión a Calmodulina/química , Cinesinas/química , Proteínas Asociadas a Microtúbulos/química , Cristalografía por Rayos X , Mitosis , Unión Proteica , Conformación Proteica
3.
J Struct Biol ; 163(1): 76-83, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18513992

RESUMEN

Kinesins are molecular motors that power cell division and transport of various proteins and organelles. Their motor activity is driven by ATP hydrolysis and depends on interactions with microtubule tracks. Essential steps in kinesin movement rely on controlled alternate binding to and detaching from the microtubules. The conformational changes in the kinesin motors induced by nucleotide and microtubule binding are coordinated by structural elements within their motor domains. Loop L11 of the kinesin motor domain interacts with the microtubule and is implicated in both microtubule binding and sensing nucleotide bound to the active site of kinesin. Consistent with its proposed role as a microtubule sensor, loop L11 is rarely seen in crystal structures of unattached kinesins. Here, we report four structures of a regulated plant kinesin, the kinesin-like calmodulin binding protein (KCBP), determined by X-ray crystallography. Although all structures reveal the kinesin motor in the ATP-like conformation, its loop L11 is observed in different conformational states, both ordered and disordered. When structured, loop L11 adds three additional helical turns to the N-terminal part of the following helix alpha4. Although interactions with protein neighbors in the crystal support the ordering of loop L11, its observed conformation suggests the conformation for loop L11 in the microtubule-bound kinesin. Variations in the positions of other features of these kinesins were observed. A critical regulatory element of this kinesin, the calmodulin binding helix positioned at the C-terminus of the motor domain, is thought to confer negative regulation of KCBP. Calmodulin binds to this helix and inserts itself between the motor and the microtubule. Comparison of five independent structures of KCBP shows that the positioning of the calmodulin binding helix is not decided by crystal packing forces but is determined by the conformational state of the motor. The observed variations in the position of the calmodulin binding helix fit the regulatory mechanism previously proposed for this kinesin motor.


Asunto(s)
Proteínas de Unión a Calmodulina/química , Cinesinas/química , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/química , Proteínas de Plantas/química , Sitios de Unión , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/fisiología , Cristalografía por Rayos X , Cinesinas/metabolismo , Proteínas de Plantas/fisiología , Conformación Proteica , Solanum tuberosum
5.
Proc Natl Acad Sci U S A ; 102(14): 5038-43, 2005 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-15784741

RESUMEN

Troponin senses Ca2+ to regulate contraction in striated muscle. Structures of skeletal muscle troponin composed of TnC (the sensor), TnI (the regulator), and TnT (the link to the muscle thin filament) have been determined. The structure of troponin in the Ca(2+)-activated state features a nearly twofold symmetrical assembly of TnI and TnT subunits penetrated asymmetrically by the dumbbell-shaped TnC subunit. Ca ions are thought to regulate contraction by controlling the presentation to and withdrawal of the TnI inhibitory segment from the thin filament. Here, we show that the rigid central helix of the sensor binds the inhibitory segment of TnI in the Ca(2+)-activated state. Comparison of crystal structures of troponin in the Ca(2+)-activated state at 3.0 angstroms resolution and in the Ca(2+)-free state at 7.0 angstroms resolution shows that the long framework helices of TnI and TnT, presumed to be a Ca(2+)-independent structural domain of troponin are unchanged. Loss of Ca ions causes the rigid central helix of the sensor to collapse and to release the inhibitory segment of TnI. The inhibitory segment of TnI changes conformation from an extended loop in the presence of Ca2+ to a short alpha-helix in its absence. We also show that Anapoe, a detergent molecule, increases the contractile force of muscle fibers and binds specifically, together with the TnI switch helix, in a hydrophobic pocket of TnC upon activation by Ca ions.


Asunto(s)
Calcio/metabolismo , Troponina C/química , Troponina C/metabolismo , Troponina T/química , Troponina T/metabolismo , Animales , Fenómenos Biofísicos , Biofisica , Pollos , Cristalografía por Rayos X , Detergentes , Técnicas In Vitro , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...