Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
ACS Appl Mater Interfaces ; 16(15): 19594-19604, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588386

RESUMEN

Polydimethylsiloxane (PDMS) has been widely used as a surface coating material, which has been reported to possess dynamic omniphobicity to a wide range of both polar and nonpolar solvents due to its high segmental flexibility and mobility. However, such high flexibility and mobility also enable penetration of small molecules into PDMS coatings, which alter the chemical and physical properties of the coating layers. To improve the anti-penetration properties of PDMS, a series of fluorinated alkyl segments are grafted to a diblock copolymer of polystyrene-block-poly(vinyl methyl siloxane) (PS-b-PVMS) using thiol-ene click reactions. This article reports the chemical characterization of these model fluorosilicone block copolymers and uses fluorescence measurements to investigate the dye penetration characteristics of polymer thin films. The introduction of longer fluorinated alkyl chains can gradually increase the anti-penetration properties as the time to reach the maximum fluorescence intensity (tpeak) gradually increases from 11 s of PS-b-PVMS to more than 1000 s of PS-b-P(n-C6F13-VMS). The improvement of anti-penetration properties is attributed to stronger inter-/intrachain interactions, phase segregation of ordered fluorinated side chains, and enhanced hydrophobicity caused by the grafting of fluorinated alkyl chains.

2.
J Chem Phys ; 159(8)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37622595

RESUMEN

We investigate diffusion in fluids near surfaces that may be coated with polymer films. We first consider diffusion in hard sphere fluids near a planar hard wall. We specifically consider color diffusion, where hard spheres are labeled A or B but are otherwise identical in all respects. In this inhomogeneous fluid, we consider a surface reaction-diffusion problem. At the left wall, a particle of species A is converted to one of species B upon a wall collision. At the opposing wall, the reverse reaction takes place: B → A. Using molecular dynamics simulation, we study the steady state of this system. We demonstrate that in the homogeneous region, a diffusing particle is subject to an equilibrium oscillatory force, the solvation force, that arises from the interfacial structuring of the fluid at the wall. For the hard sphere/hard wall system, the solvation force can be determined in various ways. We use the solvation force [the potential of mean force (PMF)] to solve the continuum diffusion equation. This provides an adequate and accurate description of the reaction-diffusion problem. The analysis is then extended to consider both color diffusion in the presence of a slowly varying one-body field such as gravity and a more applied problem of diffusion of free species through a surface film consisting of tethered chains. In both cases, the PMF experienced by the free particles is affected, but the diffusion problem can be treated in the same way as for the simpler hard sphere color diffusion case.

3.
ACS Biomater Sci Eng ; 9(9): 5111-5122, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-35708239

RESUMEN

Quorum sensing (QS) in bacteria has been well studied as a cellular communication phenomenon for decades. In recent years, such systems have been repurposed for the use of biosensors in both cellular and cell-free contexts as well as for inducible protein expression in nontraditional chassis organisms. Such biosensors are particularly intriguing when considering the association between the pathogenesis of some bacteria and their signaling intermediates. Considering this relationship and considering the recent demonstration of the species Lactobacillus plantarum WCFS1 as both a synthetic biology chassis and an organism capable of detecting a pathogen-associated QS molecule, we wanted to develop this organism as a QS sentinel. We used an approach combining techniques from both systems and synthetic biology to identify a number of native QS-response genes and to alter associated promoter activity to tune the output of L. plantarum cultures exposed to N-3-oxododecanoyl homoserine lactone. The resulting engineered QS sentinel reinforces the potential of modified lactic acid bacteria (LAB) for use in human-health-promoting applications and also demonstrates a simple rational workflow to engineer sentinel organisms to respond to any environmental or chemical stimuli.


Asunto(s)
Lactobacillus plantarum , Humanos , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Percepción de Quorum/genética
4.
mSphere ; 7(5): e0022322, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36069437

RESUMEN

Electromicrobiology can be used to understand extracellular electron uptake in previously undescribed chemolithotrophs. Enrichment and characterization of the uncultivated electroautotroph "Candidatus Tenderia electrophaga" using electromicrobiology led to the designation of the order Tenderiales. Representative Tenderiales metagenome-assembled genomes (MAGs) have been identified in a number of environmental surveys, yet a comprehensive characterization of conserved genes for extracellular electron uptake has thus far not been conducted. Using comparative genomics, we identified conserved orthologous genes within the Tenderiales and nearest-neighbor orders important for extracellular electron uptake based on a previously proposed pathway from "Ca. Tenderia electrophaga." The Tenderiales contained a conserved cluster we designated uetABCDEFGHIJ, which encodes proteins containing features that would enable transport of extracellular electrons to cytoplasmic membrane-bound energy-transducing complexes such as two conserved cytochrome cbb3 oxidases. For example, UetJ is predicted to be an extracellular undecaheme c-type cytochrome that forms a heme wire. We also identified clusters of genes predicted to facilitate assembly and maturation of electron transport proteins, as well as cellular attachment to surfaces. Autotrophy among the Tenderiales is supported by the presence of carbon fixation and stress response pathways that could allow cellular growth by extracellular electron uptake. Key differences between the Tenderiales and other known neutrophilic iron oxidizers were revealed, including very few Cyc2 genes in the Tenderiales. Our results reveal a possible conserved pathway for extracellular electron uptake and suggest that the Tenderiales have an ecological role in coupling metal or mineral redox chemistry and the carbon cycle in marine and brackish sediments. IMPORTANCE Chemolithotrophic bacteria capable of extracellular electron uptake to drive energy metabolism and CO2 fixation are known as electroautotrophs. The recently described order Tenderiales contains the uncultivated electroautotroph "Ca. Tenderia electrophaga." The "Ca. Tenderia electrophaga" genome contains genes proposed to make up a previously undescribed extracellular electron uptake pathway. Here, we use comparative genomics to show that this pathway is well conserved among Tenderiales spp. recovered by metagenome-assembled genomes. This conservation extends to near neighbors of the Tenderiales but not to other well-studied chemolithotrophs, including iron and sulfur oxidizers, indicating that these genes may be useful markers of growth using insoluble extracellular electron donors. Our findings suggest that extracellular electron uptake and electroautotrophy may be pervasive among the Tenderiales, and the geographic locations from which metagenome-assembled genomes were recovered offer clues to their natural ecological niche.


Asunto(s)
Dióxido de Carbono , Chromatiaceae , Dióxido de Carbono/metabolismo , Azufre , Hierro/metabolismo , Citocromos , Oxidorreductasas , Hemo
5.
Appl Environ Microbiol ; 87(24): e0167621, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34613754

RESUMEN

Electroactive bacteria are living catalysts, mediating energy-generating reactions at anodes or energy storage reactions at cathodes via extracellular electron transfer (EET). The Cathode-ANode (CANode) biofilm community was recently shown to facilitate both reactions; however, the identities of the primary constituents and underlying molecular mechanisms remain unknown. Here, we used metagenomics and metatranscriptomics to characterize the CANode biofilm. We show that a previously uncharacterized member of the family Desulfobulbaceae, Desulfobulbaceae-2, which had <1% relative abundance, had the highest relative gene expression and accounted for over 60% of all differentially expressed genes. At the anode potential, differential expression of genes for a conserved flavin oxidoreductase (Flx) and heterodisulfide reductase (Hdr) known to be involved in ethanol oxidation suggests a source of electrons for the energy-generating reaction. Genes for sulfate and carbon dioxide reduction pathways were expressed by Desulfobulbaceae-2 at both potentials and are the proposed energy storage reactions. Reduction reactions may be mediated by direct electron uptake from the electrode or from hydrogen generated at the cathode potential. The Desulfobulbaceae-2 genome is predicted to encode at least 85 multiheme (≥3 hemes) c-type cytochromes, some with as many as 26 heme-binding domains, that could facilitate reversible electron transfer with the electrode. Gene expression in other CANode biofilm species was also affected by the electrode potential, although to a lesser extent, and we cannot rule out their contribution to observed current. Results provide evidence of gene expression linked to energy storage and energy-generating reactions and will enable development of the CANode biofilm as a microbially driven rechargeable battery. IMPORTANCE Microbial electrochemical technologies (METs) rely on electroactive bacteria to catalyze energy-generating and energy storage reactions at electrodes. Known electroactive bacteria are not equally capable of both reactions, and METs are typically configured to be unidirectional. Here, we report on genomic and transcriptomic characterization of a recently described microbial electrode community called the Cathode-ANode (CANode). The CANode community is able to generate or store electrical current based on the electrode potential. During periods where energy is not needed, electrons generated from a renewable source, such as solar power, could be converted into energy storage compounds to later be reversibly oxidized by the same microbial catalyst. Thus, the CANode system can be thought of as a living "rechargeable battery." Results show that a single organism may be responsible for both reactions demonstrating a new paradigm for electroactive bacteria.


Asunto(s)
Deltaproteobacteria , Electrodos , Metagenómica , Microbiota , Transcriptoma , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo
6.
Front Microbiol ; 12: 725727, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659152

RESUMEN

New methods for antimicrobial design are critical for combating pathogenic bacteria in the post-antibiotic era. Fortunately, competition within complex communities has led to the natural evolution of antimicrobial peptide (AMP) sequences that have promising bactericidal properties. Unfortunately, the identification, characterization, and production of AMPs can prove complex and time consuming. Here, we report a peptide generation framework, PepVAE, based around variational autoencoder (VAE) and antimicrobial activity prediction models for designing novel AMPs using only sequences and experimental minimum inhibitory concentration (MIC) data as input. Sampling from distinct regions of the learned latent space allows for controllable generation of new AMP sequences with minimal input parameters. Extensive analysis of the PepVAE-generated sequences paired with antimicrobial activity prediction models supports this modular design framework as a promising system for development of novel AMPs, demonstrating controlled production of AMPs with experimental validation of predicted antimicrobial activity.

7.
Elife ; 102021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34643180

RESUMEN

Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here, we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryo-TEM reveals that a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild-type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Shewanella/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Shewanella/metabolismo
8.
Biofilm ; 3: 100051, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34195607

RESUMEN

Marinobacter spp. are opportunitrophs with a broad metabolic range including interactions with metals and electrodes. Marinobacter atlanticus strain CP1 was previously isolated from a cathode biofilm microbial community enriched from a sediment microbial fuel cell. Like other Marinobacter spp., M. atlanticus generates small amounts of electrical current when grown as a biofilm on an electrode, which is enhanced by the addition of redox mediators. However, the molecular mechanism resulting in extracellular electron transfer is unknown. Here, RNA-sequencing was used to determine changes in gene expression in electrode-attached and planktonic cells of M. atlanticus when grown at electrode potentials that enable current production (310 and 510 mV vs. SHE) compared to a potential that enables electron uptake (160 mV). Cells grown at current-producing potentials had increased expression of genes for molybdate transport, regardless of planktonic or attached lifestyle. Electrode-attached cells at current-producing potentials showed increased expression of the major export protein for the type VI secretion system. Growth at 160 mV resulted in an increase in expression of genes related to stress response and DNA repair including both RecBCD and the LexA/RecA regulatory network, as well as genes for copper homeostasis. Changes in expression of proteins with PEP C-terminal extracellular export motifs suggests that M. atlanticus is remodeling the biofilm matrix in response to electrode potential. These results improve our understanding of the physiological adaptations required for M. atlanticus growth on electrodes, and suggest a role for metal acquisition, either as a requirement for metal cofactors of redox proteins or as a possible electron shuttling mechanism.

9.
Sensors (Basel) ; 20(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081235

RESUMEN

This review describes an ongoing effort intended to develop wireless sensor networks for real-time monitoring of airborne targets across a broad area. The goal is to apply the spectrophotometric characteristics of porphyrins and metalloporphyrins in a colorimetric array for detection and discrimination of changes in the chemical composition of environmental air samples. The work includes hardware, software, and firmware design as well as development of algorithms for identification of event occurrence and discrimination of targets. Here, we describe the prototype devices and algorithms related to this effort as well as work directed at selection of indicator arrays for use with the system. Finally, we review the field trials completed with the prototype devices and discuss the outlook for further development.

10.
Sensors (Basel) ; 20(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971796

RESUMEN

We have developed the ABEAM-15, a custom-built multiplexed reflectance device for the detection of vapor phase and aerosolized chemical plumes. The instrument incorporates fifteen individual sensing elements, has wireless communications, offers support for a battery pack, and is capable of both live and fully autonomous operation. Two housing options have been fabricated: a compact open housing for indoor use and a larger weather-sealed housing for outdoor use. Previously developed six-plex analysis algorithms are extended to 15-plex format and implemented on a laptop computer. We report the results of recent outdoor field trials with this instrument in Denver, CO in a stadium security scenario. Through software, the wireless modules on each instrument were configured to form a six-instrument, star-point topology, distributed microsensor network with live reporting and real-time data analysis. The network was tested with aerosols of methyl salicylate.

11.
Microbiol Resour Announc ; 8(36)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488535

RESUMEN

Here, we present the complete genome sequence of Leisingera aquamixtae R2C4, isolated from the electroautotrophic microbial consortium biocathode MCL (Marinobacter-Chromatiaceae-Labrenzia). As an isolate of a current-producing system, the genome sequence of L. aquamixtae will yield insights regarding electrode-associated microorganisms and communities. A dark pigment is also observed during cultivation.

12.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29722806

RESUMEN

Here, we describe the long-distance (multi-cell-length) extracellular electron transport (LD-EET) that occurs in an anode-grown mixed community biofilm (MCB) enriched from river sediment that contains 3%-45% Geobacter spp. High signal-to-noise temperature-dependent electrochemical gating measurements (EGM) using interdigitated microelectrode arrays reveal a peak-shaped electrical conductivity vs. potential dependency, indicating MCB acts as a redox conductor, similar to pure culture anode-grown Geobacter sulfurreducens biofilms (GSB). EGM also reveal that the maximum sustained rate of LD-EET in MCB is comparable to GSB, and the same whether under acetate-oxidizing or acetate-free conditions. Voltammetry indicated that MCB possesses 3- to 5-fold less electrode-accessible redox cofactors than GSB, suggesting that MCB may be more efficiently organized than GSB for LD-EET or that a small portion of electrode accessible redox cofactors of GSB are involved in LD-EET. The activation energy for LD-EET (0.11 ± 0.01 eV) was comparable to GSB, consistent with the possible role of c-type cytochromes as LD-EET cofactors, detected in abundance by confocal resonance Raman microscopy. Taken together, the results demonstrate LD-EET for a mixed community anode-grown microbial biofilm that is remarkably similar to GSB even though it contains many different types of microorganisms and appears to utilize far fewer EET redox cofactors.


Asunto(s)
Conductividad Eléctrica , Transporte de Electrón/fisiología , Geobacter/fisiología , Sedimentos Geológicos/microbiología , Biopelículas/crecimiento & desarrollo , Electrodos , Electrones , Geobacter/clasificación , Microscopía Confocal , Oxidación-Reducción , Ríos/microbiología
13.
Front Microbiol ; 9: 3176, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622527

RESUMEN

Here, we report on the development of a genetic system for Marinobacter sp. strain CP1, previously isolated from the Biocathode MCL community and shown to oxidize iron and grow as a cathodic biofilm. Sequence analysis of the small and large subunits of the 16S rRNA gene of CP1, as well as comparison of select conserved proteins, indicate that it is most closely related to Marinobacter adhaerens HP15 and Marinobacter sp. ES.042. In silico DNA-DNA hybridization using the genome-to-genome distance calculator (GGDC) predicts CP1 to be a new species of Marinobacter described here as Marinobacter atlanticus. CP1 is competent for transformation with plasmid DNA using conjugation with Escherichia coli donor strain WM3064 and constitutive expression of green fluorescent protein (GFP) is stable in the absence of antibiotic selection. Targeted double deletion mutagenesis of homologs for the M. aquaeoli fatty acyl-CoA reductase (acrB) and fatty aldehyde reductase (farA) genes resulted in a loss of production of wax esters; however, single deletion mutants for either gene resulted in an increase in total wax esters recovered. Genetic tools presented here for CP1 will enable further exploration of wax ester synthesis for biotechnological applications, as well as furthering our efforts to understand the role of CP1 within the Biocathode MCL community.

14.
Microb Biotechnol ; 11(1): 98-111, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28696003

RESUMEN

Biocathode microbial communities are proposed to catalyse a range of useful reactions. Unlike bioanodes, model biocathode organisms have not yet been successfully cultivated in isolation highlighting the need for culture-independent approaches to characterization. Biocathode MCL (Marinobacter, Chromatiaceae, Labrenzia) is a microbial community proposed to couple CO2 fixation to extracellular electron transfer and O2 reduction. Previous metagenomic analysis of a single MCL bioelectrochemical system (BES) resulted in resolution of 16 bin genomes. To further resolve bin genomes and compare community composition across replicate MCL BES, we performed shotgun metagenomic and 16S rRNA gene (16S) sequencing at steady-state current. Clustering pooled reads from replicate BES increased the number of resolved bin genomes to 20, over half of which were > 90% complete. Direct comparison of unassembled metagenomic reads and 16S operational taxonomic units (OTUs) predicted higher community diversity than the assembled/clustered metagenome and the predicted relative abundances did not match. However, when 16S OTUs were mapped to bin genomes and genome abundance was scaled by 16S gene copy number, estimated relative abundance was more similar to metagenomic analysis. The relative abundance of the bin genome representing 'Ca. Tenderia electrophaga' was correlated with increasing current, further supporting the hypothesis that this organism is the electroautotroph.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biota , Chromatiaceae/aislamiento & purificación , Chromatiaceae/metabolismo , Electrodos/microbiología , Dióxido de Carbono/metabolismo , Chromatiaceae/clasificación , Chromatiaceae/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Metagenómica , Oxidación-Reducción , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Materials (Basel) ; 10(6)2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28773042

RESUMEN

Biodiesel is produced by transesterification of animal fat, vegetable oil, or waste cooking oil with alcohol. After production costs, the economic viability of biodiesel is dependent on what steps are necessary to remove impurities following synthesis and the effectiveness of quality control analysis. Solid-phase extraction offers a potentially advantageous approach in biodiesel processing applications. Nanoporous scaffolds were investigated for adsorption of glycerol, a side product of biodiesel synthesis that is detrimental to engine combustion when present. Materials were synthesized with varying pore wall composition, including ethane and diethylbenzene bridging groups, and sulfonated to promote hydrogen bonding interactions with glycerol. Materials bearing sulfonate groups throughout the scaffold walls as well as those post-synthetically grafted onto the surfaces show notably superior performance for uptake of glycerol. The sorbents are effective when used in biodiesel mixtures, removing greater than 90% of glycerol from a biodiesel preparation.

16.
Heliyon ; 3(6): e00312, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28626804

RESUMEN

Here, the potential of colorimetric sensors utilizing porphyrin indicators for long term environmental monitoring is demonstrated. Prototype devices based on commercial color sensing chips (six per device) were combined with in-house developed algorithms for data analysis. The devices are intended to provide real-time sensing of threats. An initial outdoor data set was collected using prototype devices with occasional spiked exposure to targets. This data was supported by similar data collected in a controlled indoor environment. Weaknesses in the noted performance of the devices during these experiments were addressed through altering device parameters, algorithm parameters, and array element composition. Additional outdoor data sets totaling 1,616 h and indoor data sets totaling 728 h were collected in support of assessing these changes to the system configuration. The optimized system provided receiver operating characteristics (ROC) of specificity 0.97 and sensitivity 1.0.

17.
mSystems ; 2(2)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28382330

RESUMEN

Biocathodes provide a stable electron source to drive reduction reactions in electrotrophic microbial electrochemical systems. Electroautotrophic biocathode communities may be more robust than monocultures in environmentally relevant settings, but some members are not easily cultivated outside the electrode environment. We previously used metagenomics and metaproteomics to propose a pathway for coupling extracellular electron transfer (EET) to carbon fixation in "Candidatus Tenderia electrophaga," an uncultivated but dominant member of an electroautotrophic biocathode community. Here we validate and refine this proposed pathway using metatranscriptomics of replicate aerobic biocathodes poised at the growth potential level of 310 mV and the suboptimal 470 mV (versus the standard hydrogen electrode). At both potentials, transcripts were more abundant from "Ca. Tenderia electrophaga" than from any other constituent, and its relative activity was positively correlated with current. Several genes encoding key components of the proposed "Ca. Tenderia electrophaga" EET pathway were more highly expressed at 470 mV, consistent with a need for cells to acquire more electrons to obtain the same amount of energy as at 310 mV. These included cyc2, encoding a homolog of a protein known to be involved in iron oxidation. Mean expression of all CO2 fixation-related genes is 0.27 log2-fold higher at 310 mV, indicating that reduced energy availability at 470 mV decreased CO2 fixation. Our results substantiate the claim that "Ca. Tenderia electrophaga" is the key electroautotroph, which will help guide further development of this community for microbial electrosynthesis. IMPORTANCE Bacteria that directly use electrodes as metabolic electron donors (biocathodes) have been proposed for applications ranging from microbial electrosynthesis to advanced bioelectronics for cellular communication with machines. However, just as we understand very little about oxidation of analogous natural insoluble electron donors, such as iron oxide, the organisms and extracellular electron transfer (EET) pathways underlying the electrode-cell direct electron transfer processes are almost completely unknown. Biocathodes are a stable biofilm cultivation platform to interrogate both the rate and mechanism of EET using electrochemistry and to study the electroautotrophic organisms that catalyze these reactions. Here we provide new evidence supporting the hypothesis that the uncultured bacterium "Candidatus Tenderia electrophaga" directly couples extracellular electron transfer to CO2 fixation. Our results provide insight into developing biocathode technology, such as microbial electrosynthesis, as well as advancing our understanding of chemolithoautotrophy.

18.
Nanoscale Horiz ; 2(5): 241-252, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260679

RESUMEN

Accumulating studies by many groups have found consistent enhancement in a wide variety of enzyme activities when they are displayed around nanoparticles. However, the underlying mechanism(s) that give rise to this phenomenon are still largely unknown. Herein, we develop a detailed reaction scheme that considers many of the various possible interactions between a substrate and a given enzyme-nanoparticle bioconjugate. The properties and some functional predictions that emanate from the reaction scheme were then tested using a model system where the homotetrameric beta-galactosidase enzyme complex was assembled with luminescent semiconductor nanocrystalline quantum dots displayed around its periphery. This type of assembly occurs as the ∼465 kDa enzyme complex is significantly larger than the 4.2 nm diameter green emitting quantum dots utilized. This unique architecture, in conjunction with the fact that this enzyme functions at or near the diffusion limit, provided a unique opportunity to selectively probe certain aspects of enzyme enhancement when attached to a nanoparticle with minimal potential perturbations to the native enzyme structure. Experimental assays were conducted where both free enzymes and quantum dot-decorated enzymes were compared directly in side-by-side samples and included formats where the kinetic processes were challenged with increasing viscosity and competitive inhibitors. The results strongly suggest that it is possible for there to be significant enhancements in an enzyme's catalytic rate or kcat after attachment to a nanoparticle even when it is apparently diffusion limited without requiring any gross changes to the enzyme's structure. A discussion of how this reaction scheme and model can be applied to other systems is provided.

19.
Sensors (Basel) ; 16(11)2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27854335

RESUMEN

Here, we describe our efforts focused on development of an algorithm for identification of detection events in a real-time sensing application relying on reporting of color values using commercially available color sensing chips. The effort focuses on the identification of event occurrence, rather than target identification, and utilizes approaches suitable to onboard device incorporation to facilitate portable and autonomous use. The described algorithm first excludes electronic noise generated by the sensor system and determines response thresholds. This automatic adjustment provides the potential for use with device variations as well as accommodating differing indicator behaviors. Multiple signal channels (RGB) as well as multiple indicator array elements are combined for reporting of an event with a minimum of false responses. While the method reported was developed for use with paper-supported porphyrin and metalloporphyrin indicators, it should be equally applicable to other colorimetric indicators. Depending on device configurations, receiver operating characteristic (ROC) sensitivities of 1 could be obtained with specificities of 0.87 (threshold 160 ppb, ethanol).

20.
Appl Environ Microbiol ; 82(20): 6233-6246, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27520819

RESUMEN

The effect of microwave frequency electromagnetic fields on living microorganisms is an active and highly contested area of research. One of the major drawbacks to using mesophilic organisms to study microwave radiation effects is the unavoidable heating of the organism, which has limited the scale (<5 ml) and duration (<1 h) of experiments. However, the negative effects of heating a mesophile can be mitigated by employing thermophiles (organisms able to grow at temperatures of >60°C). This study identified changes in global gene expression profiles during the growth of Thermus scotoductus SA-01 at 65°C using dielectric (2.45 GHz, i.e., microwave) heating. RNA sequencing was performed on cultures at 8, 14, and 24 h after inoculation to determine the molecular mechanisms contributing to long-term cellular growth and survival under microwave heating conditions. Over the course of growth, genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. Genes involved in cell wall biogenesis and elongation were also upregulated, consistent with the distinct elongated cell morphology observed after 24 h using microwave heating. Analysis of the global differential gene expression data enabled the identification of molecular processes specific to the response of T. scotoductus SA-01 to dielectric heating during growth. IMPORTANCE: The residual heating of living organisms in the microwave region of the electromagnetic spectrum has complicated the identification of radiation-only effects using microorganisms for 50 years. A majority of the previous experiments used either mature cells or short exposure times with low-energy high-frequency radiation. Using global differential gene expression data, we identified molecular processes unique to dielectric heating using Thermus scotoductus SA-01 cultured over 30 h in a commercial microwave digestor. Genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. These findings serve as a platform for future studies with mesophiles in order to better understand the response of microorganisms to microwave radiation.


Asunto(s)
Extremófilos/crecimiento & desarrollo , Extremófilos/efectos de la radiación , Thermus/crecimiento & desarrollo , Thermus/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Calor , Microondas , Thermus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...