RESUMEN
Biosynthesis of sodorifen with a unique C16-bicyclo[3.2.1]octene framework requires an S-adenosyl methionine-dependent methyltransferase SodC and terpene cyclase SodD. While bioinformatic analyses reveal a wide distribution of the sodCD genes organization in bacteria, their functional diversity remains largely unknown. Herein, two sodorifen-type gene clusters, pcch and pcau, from Pseudomonas sp. are heterologously expressed in Escherichia coli, leading to the discovery of two C16 terpenoids. Enzymatic synthesis of these compounds is achieved using the two (SodCD-like) pathway-specific enzymes. Enzyme assays using different combinations of methyltransferases and terpene synthases across the pcch, pcau, and sod pathways reveal a unifying biosynthetic mechanism: all three SodC-like enzymes methylate farnesyl pyrophosphate (FPP) with subsequent cyclization to a common intermediate, pre-sodorifen pyrophosphate. Structural diversification of this joint precursor solely occurs by the subsequently acting individual terpene synthases. Our findings expand basic biosynthetic understanding and structural diversity of unusual C16-terpenoids.
RESUMEN
Enzymatic oxidative dearomatization is an efficient way to generate chiral molecules from simple arenes. One example is the flavin-dependent monooxygenase SorbC involved in sorbicillinoid biosynthesis. However, SorbC requires a long-chain keto substituent at its phenolic substrate, thus preventing its application beyond the synthesis of natural sorbicillinoids or close structural analogues. This work describes an approach to broaden the accessible product spectrum of SorbC by employing an ester functionality mimicking the natural substrate structure during enzymatic oxidation.