Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 12(4): 3243-3252, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29608849

RESUMEN

Herein, we show that wetting properties such as giant wetting anisotropy and dynamic shaping can be observed when femtoliter (submicron scale) dew droplets are condensed on nanopatterned mildly hydrophilic surfaces. Large-scale, optically transparent, nanopatterned TiO2 surfaces were fabricated by direct nanoimprinting lithography of sol-gel-derived films. Square, infinitely elongated, or circular droplets were obtained with square, line, or concentric patterns, respectively, and were visualized in situ during formation and recession using optical microscopy and environmental scanning electronic microscopy. We first describe how extremely elongated droplets could form on mildly hydrophilic surfaces, naturally contaminated in real environmental conditions. In this configuration, the dew droplet shape can be dynamically and reversibly varied by controlling the out-of-equilibrium conditions associated with condensation/evaporation kinetics. As an example of the application, we propose a "morphological" sensor that exploits the shape of the dew droplets as a transduction mode for detecting organic vapors in the outer atmosphere. Importantly, this study is underlining that environmentally stable, purely hydrophilic surfaces can be smartly engineered to induce wetting phenomena at very small scale never observed so far for hydrophobic or heterogeneous surfaces. Our versatile approach based on nanoimprinted, transparent sol-gel films could open great perspectives for the implementation of environmentally stable, mildly hydrophilic materials for "dew engineering" applications such as open microfluidics, fuming for fingerprints, vapor sensing, or water harvesting on glass windows, for instance.

2.
Microsc Microanal ; 20(2): 366-75, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24572045

RESUMEN

The characterization of biological and inorganic materials by determining their three-dimensional structure in conditions closer to their native state is a major challenge of technological research. Environmental scanning electron microscopy (ESEM) provides access to the observation of hydrated samples in water environments. Here, we present a specific device for ESEM in the scanning transmission electron microscopy mode, allowing the acquisition of tilt-series suitable for tomographic reconstructions. The resolution which can be obtained with this device is first determined. Then, we demonstrate the feasibility of tomography on wet materials. The example studied here is hydrophilic mesoporous silica (MCM-41). Finally, the minimum thickness of water which can be detected is calculated from Monte Carlo simulations and compared with the resolution expected in the tomograms.

3.
Biomaterials ; 34(1): 181-95, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23046756

RESUMEN

Over the last few decades, nanoparticles have been studied in theranostic field with the objective of exhibiting a long circulation time through the body coupled to major accumulation in tumor tissues, rapid elimination, therapeutic potential and contrast properties. In this context, we developed sub-5 nm gadolinium-based nanoparticles that possess in vitro efficient radiosensitizing effects at moderate concentration when incubated with head and neck squamous cell carcinoma cells (SQ20B). Two main cellular internalization mechanisms were evidenced and quantified: passive diffusion and macropinocytosis. Whereas the amount of particles internalized by passive diffusion is not sufficient to induce in vitro a significant radiosensitizing effect, the cellular uptake by macropinocytosis leads to a successful radiotherapy in a limited range of particles incubation concentration. Macropinocytosis processes in two steps: formation of agglomerates at vicinity of the cell followed by their collect via the lamellipodia (i.e. the "arms") of the cell. The first step is strongly dependent on the physicochemical characteristics of the particles, especially their zeta potential that determines the size of the agglomerates and their distance from the cell. These results should permit to control the quantity of particles internalized in the cell cytoplasm, promising ambitious opportunities towards a particle-assisted radiotherapy using lower radiation doses.


Asunto(s)
Gadolinio/metabolismo , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patología , Pinocitosis , Fármacos Sensibilizantes a Radiaciones/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Supervivencia Celular/efectos de los fármacos , Difusión , Humanos , Cinética , Nanopartículas/ultraestructura , Tamaño de la Partícula , Seudópodos/metabolismo , Factores de Tiempo , Vacuolas/metabolismo , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...