Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sci Rep ; 14(1): 545, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177653

RESUMEN

Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.


Asunto(s)
Roedores , Sigmodontinae , Animales , Sigmodontinae/genética , Roedores/genética , Filogenia , Arvicolinae , Muridae , Inversión Cromosómica , Pintura Cromosómica
2.
Mol Genet Genomics ; 298(5): 1023-1035, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37233800

RESUMEN

Repetitive DNA are sequences repeated hundreds or thousands of times and an abundant part of eukaryotic genomes. SatDNA represents the majority of the repetitive sequences, followed by transposable elements. The species Holochilus nanus (HNA) belongs to the rodent tribe Oryzomyini, the most taxonomically diverse of Sigmodontinae subfamily. Cytogenetic studies on Oryzomyini reflect such diversity by revealing an exceptional range of karyotype variability. However, little is known about the repetitive DNA content and its involvement in chromosomal diversification of these species. In the search for a more detailed understanding about the composition of repetitive DNA on the genome of HNA and other species of Oryzomyini, we employed a combination of bioinformatic, cytogenetic and molecular techniques to characterize the repetitive DNA content of these species. RepeatExplorer analysis showed that almost half of repetitive content of HNA genome are composed by Long Terminal Repeats and a less significant portion are composed by Short Interspersed Nuclear Elements and Long Interspersed Nuclear Elements. RepeatMasker showed that more than 30% of HNA genome are composed by repetitive sequences, with two main waves of repetitive element insertion. It was also possible to identify a satellite DNA sequence present in the centromeric region of Oryzomyini species, and a repetitive sequence enriched on the long arm of HNA X chromosome. Also, comparative analysis between HNA genome with and without B chromosome did not evidence any repeat element enriched on the supernumerary, suggesting that B chromosome of HNA is composed by a fraction of repeats from all the genome.


Asunto(s)
Arvicolinae , Sigmodontinae , Animales , Ratas , Sigmodontinae/genética , Arvicolinae/genética , Humedales , Secuencias Repetitivas de Ácidos Nucleicos/genética , Cariotipo , ADN Satélite/genética , Elementos Transponibles de ADN/genética
3.
Genes (Basel) ; 14(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37107574

RESUMEN

Although molecular information for the wood stork (Mycteria americana) has been well described, data concerning their karyotypical organization and phylogenetic relationships with other storks are still scarce. Thus, we aimed to analyze the chromosomal organization and diversification of M. americana, and provide evolutionary insights based on phylogenetic data of Ciconiidae. For this, we applied both classical and molecular cytogenetic techniques to define the pattern of distribution of heterochromatic blocks and their chromosomal homology with Gallus gallus (GGA). Maximum likelihood analyses and Bayesian inferences (680 bp COI and 1007 bp Cytb genes) were used to determine their phylogenetic relationship with other storks. The results confirmed 2n = 72, and the heterochromatin distribution pattern was restricted to centromeric regions of the chromosomes. FISH experiments identified fusion and fission events involving chromosomes homologous to GGA macrochromosome pairs, some of which were previously found in other species of Ciconiidae, possibly corresponding to synapomorphies for the group. Phylogenetic analyses resulted in a tree that recovered only Ciconinii as a monophyletic group, while Mycteriini and Leptoptlini tribes were configured as paraphyletic clades. In addition, the association between phylogenetic and cytogenetic data corroborates the hypothesis of a reduction in the diploid number throughout the evolution of Ciconiidae.


Asunto(s)
Cromosomas , Diploidia , Animales , Filogenia , Teorema de Bayes , Pollos/genética
4.
BMC Genomics ; 24(1): 38, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694120

RESUMEN

BACKGROUND: Chromosomal painting in manatees has clarified questions about the rapid evolution of sirenians within the Paenungulata clade. Further cytogenetic studies in Afrotherian species may provide information about their evolutionary dynamics, revealing important insights into the ancestral karyotype in the clade representatives. The karyotype of Trichechus inunguis (TIN, Amazonian manatee) was investigated by chromosome painting, using probes from Trichechus manatus latirostris (TML, Florida manatee) to analyze the homeologies between these sirenians. RESULTS: A high similarity was found between these species, with 31 homologous segments in TIN, nineteen of which are whole autosomes, besides the X and Y sex chromosomes. Four chromosomes from TML (4, 6, 8, and 9) resulted in two hybridization signals, totaling eight acrocentrics in the TIN karyotype. This study confirmed in TIN the chromosomal associations of Homo sapiens (HSA) shared in Afrotheria, such as the 5/21 synteny, and in the Paenungulata clade with the syntenies HSA 2/3, 8/22, and 18/19, in addition to the absence of HSA 4/8 common in eutherian ancestral karyotype (EAK). CONCLUSIONS: TIN shares more conserved chromosomal signals with the Paenungulata Ancestral Karyotype (APK, 2n = 58) than Procavia capensis (Hyracoidea), Loxodonta africana (Proboscidea) and TML (Sirenia), where TML presents less conserved signals with APK, demonstrating that its karyotype is the most derived among the representatives of Paenungulata. The chromosomal changes that evolved from APK to the T. manatus and T. inunguis karyotypes (7 and 4 changes, respectively) are more substantial within the Trichechus genus compared to other paenungulates. Among these species, T. inunguis presents conserved traits of APK in the American manatee genus. Consequently, the karyotype of T. manatus is more derived than that of T. inunguis.


Asunto(s)
Trichechus inunguis , Trichechus manatus , Animales , Humanos , Cariotipo , Sirenia/genética , Trichechus/genética , Trichechus inunguis/genética , Trichechus manatus/genética
5.
Sci Rep ; 12(1): 19514, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376355

RESUMEN

The subfamily Phyllostominae (Chiroptera, Phyllostomidae) comprises 10 genera of Microchiroptera bats from the Neotropics. The taxonomy of this group is controversial due to incongruities in the phylogenetic relationships evident from different datasets. The genus Lophostoma currently includes eight species whose phylogenetic relationships have not been resolved. Integrative analyzes including morphological, molecular and chromosomal data are powerful tools to investigate the phylogenetics of organisms, particularly if obtained by chromosomal painting. In the present work we performed comparative genomic mapping of three species of Lophostoma (L. brasiliense 2n = 30, L. carrikeri 2n = 26 and L. schulzi 2n = 26), by chromosome painting using whole chromosome probes from Phyllostomus hastatus and Carollia brevicauda; this included mapping interstitial telomeric sites. The karyotype of L. schulzi (LSC) is a new cytotype. The species L. brasiliense and L. carrikeri showed interstitial telomeric sequences that probably resulted from expansions of repetitive sequences near pericentromeric regions. The addition of chromosomal painting data from other species of Phyllostominae allowed phylogeny construction by maximum parsimony, and the determination that the genera of this subfamily are monophyletic, and that the genus Lophostoma is paraphyletic. Additionally, a review of the taxonomic status of LSC is suggested to determine if this species should be reclassified as part of the genus Tonatia.


Asunto(s)
Quirópteros , Pintura Cromosómica , Animales , Quirópteros/genética , Pintura Cromosómica/métodos , Cariotipo , Filogenia , Telómero
6.
PLoS One ; 17(8): e0272836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35947613

RESUMEN

Charadriiformes represent one of the largest orders of birds; members of this order are diverse in morphology, behavior and reproduction, making them an excellent model for studying evolution. It is accepted that the avian putative ancestral karyotype, with 2n = 80, remains conserved for about 100 million years. So far, only a few species of Charadriiformes have been studied using molecular cytogenetics. Here, we performed chromosome painting on metphase chromosomes of two species of Charadriidae, Charadrius collaris and Vanellus chilensis, with whole chromosome paint probes from Burhinus oedicnemus. Charadrius collaris has a diploid number of 76, with both sex chromosomes being submetacentric. In V. chilensi a diploid number of 78 was identified, and the Z chromosome is submetacentric. Chromosome painting suggests that chromosome conservation is a characteristic common to the family Charadriidae. The results allowed a comparative analysis between the three suborders of Charadriiformes and the order Gruiformes using chromosome rearrangements to understand phylogenetic relationships between species and karyotypic evolution. However, the comparative analysis between the Charadriiformes suborders so far has not revealed any shared rearrangements, indicating that each suborder follows an independent evolutionary path, as previously proposed. Likewise, although the orders Charadriiformes and Gruiformes are placed on sister branches, they do not share any signature chromosomal rearrangements.


Asunto(s)
Anfípodos , Charadriiformes , Anfípodos/genética , Animales , Aves/genética , Charadriiformes/genética , Pintura Cromosómica/métodos , Evolución Molecular , Filogenia , Cromosomas Sexuales/genética
7.
Transpl Int ; 35: 10335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874309

RESUMEN

Little is known about how early islet graft function evolves in the clinical setting. The BETA-2 score is a validated index of islet function that can be calculated from a single blood sample and lends itself to frequent monitoring of graft function. In this study, we characterized early graft function by calculating weekly BETA-2 score in recipients who achieved insulin independence after single transplant (group 1, n = 8) compared to recipients who required a second transplant before achieving insulin independence (group 2, n = 7). We also determined whether graft function 1-week post-transplant was associated with insulin independence in individuals who received initial transplant between 2000-2017 (n = 125). Our results show that graft function increased rapidly reaching a plateau 4-6 weeks post-transplant. The BETA-2 score was higher in group 1 compared to group 2 as early as 1-week post-transplant (15 + 3 vs. 9 + 2, p = 0.001). In an unselected cohort, BETA-2 at 1-week post-transplant was associated with graft survival as defined by insulin independence during median follow up of 12 months (range 2-119 months) with greater survival among those with BETA-2 score >10 (p < 0.001, log-rank test). These findings suggest that primary graft function is established within 4-6 weeks post-transplant and graft function at 1-week post-transplant predicts long-term transplant outcomes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Glucemia , Péptido C , Diabetes Mellitus Tipo 1/cirugía , Supervivencia de Injerto , Humanos , Insulina/uso terapéutico , Trasplante de Islotes Pancreáticos/métodos
8.
Nat Cell Biol ; 24(6): 858-871, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35697783

RESUMEN

Human naive pluripotent stem cells have unrestricted lineage potential. Underpinning this property, naive cells are thought to lack chromatin-based lineage barriers. However, this assumption has not been tested. Here we define the chromatin-associated proteome, histone post-translational modifications and transcriptome of human naive and primed pluripotent stem cells. Our integrated analysis reveals differences in the relative abundance and activities of distinct chromatin modules. We identify a strong enrichment of polycomb repressive complex 2 (PRC2)-associated H3K27me3 in the chromatin of naive pluripotent stem cells and H3K27me3 enrichment at promoters of lineage-determining genes, including trophoblast regulators. PRC2 activity acts as a chromatin barrier restricting the differentiation of naive cells towards the trophoblast lineage, whereas inhibition of PRC2 promotes trophoblast-fate induction and cavity formation in human blastoids. Together, our results establish that human naive pluripotent stem cells are not epigenetically unrestricted, but instead possess chromatin mechanisms that oppose the induction of alternative cell fates.


Asunto(s)
Células Madre Pluripotentes , Complejo Represivo Polycomb 2 , Diferenciación Celular/genética , Cromatina/genética , Histonas/genética , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Trofoblastos/metabolismo
9.
Sci Rep ; 12(1): 8690, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610291

RESUMEN

X-autosome translocation (XY1Y2) has been reported in distinct groups of vertebrates suggesting that the rise of a multiple sex system within a species may act as a reproductive barrier and lead to speciation. The viability of this system has been linked with repetitive sequences located between sex and autosomal portions of the translocation. Herein, we investigate Oecomys auyantepui, using chromosome banding and Fluorescence In Situ Hybridization with telomeric and Hylaeamys megacephalus whole-chromosome probes, and phylogenetic reconstruction using mtDNA and nuDNA sequences. We describe an amended karyotype for O. auyantepui (2n = 64♀65♂/FNa = 84) and report for the first time a multiple sex system (XX/XY1Y2) in Oryzomyini rodents. Molecular data recovered O. auyantepui as a monophyletic taxon with high support and cytogenetic data indicate that O. auyantepui may exist in two lineages recognized by distinct sex systems. The Neo-X exhibits repetitive sequences located between sex and autosomal portions, which would act as a boundary between these two segments. The G-banding comparisons of the Neo-X chromosomes of other Sigmodontinae taxa revealed a similar banding pattern, suggesting that the autosomal segment in the Neo-X can be shared among the Sigmodontinae lineages with a XY1Y2 sex system.


Asunto(s)
Pintura Cromosómica , Sigmodontinae , Animales , Hibridación Fluorescente in Situ , Filogenia , Roedores/genética , Cromosomas Sexuales/genética , Sigmodontinae/genética
10.
Front Genet ; 13: 832495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401658

RESUMEN

The genus Gymnotus is a large monophyletic group of freshwater weakly-electric fishes, with wide distribution in Central and South America. It has 46 valid species divided into six subgenera (Gymnotus, Tijax, Tigre, Lamontianus, Tigrinus and Pantherus) with large chromosome plasticity and diploid numbers (2n) ranging from 34 to 54. Within this rich diversity, there is controversy about whether Gymnotus (Gymnotus) carapo species is a single widespread species or a complex of cryptic species. Cytogenetic studies show different diploid numbers for G. carapo species, ranging from 40 to 54 chromosomes with varied karyotypes found even between populations sharing the same 2n. Whole chromosome painting has been used in studies on fish species and recently has been used for tracking the chromosomal evolution of Gymnotus and assisting in its cytotaxonomy. Comparative genomic mapping using chromosome painting has shown more complex rearrangements in Gymnotus carapo than shown in previous studies by classical cytogenetics. These studies demonstrate that multiple chromosome pairs are involved in its chromosomal reorganization, suggesting the presence of a complex of cryptic species due to a post zygotic barrier. In the present study, metaphase chromosomes of G. carapo occidentalis "catalão" (GCC, 2n = 40, 30m/sm+10st/a) from the Catalão Lake, Amazonas, Brazil, were hybridized with whole chromosome probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30m/sm+12st/a). The results reveal chromosome rearrangements and a high number of repetitive DNA sites. Of the 12 pairs of G. carapo chromosomes that could be individually identified (GCA 1-3, 6, 7, 9, 14, 16 and 18-21), 8 pairs (GCA 1, 2, 6, 7, 9, 14, 20, 21) had homeology conserved in GCC. Of the GCA pairs that are grouped (GCA [4, 8], [5, 17], [10, 11] and [12, 13, 15]), most kept the number of signals in GCC (GCA [5, 17], [10, 11] and [12, 13, 15]). The remaining chromosomes are rearranged in the GCC karyotype. Analysis of both populations of the G. carapo cytotypes shows extensive karyotype reorganization. Along with previous studies, this suggests that the different cytotypes analyzed here may represent different species and supports the hypothesis that G. carapo is not a single widespread species, but a group of cryptic species.

11.
Org Lett ; 24(14): 2750-2755, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35377671

RESUMEN

We report here the application of silyl enol ether moieties as efficient alkene coupling partners within cobalt-mediated intramolecular Pauson-Khand reactions. This cyclization strategy delivers synthetically valuable oxygenated cyclopentenone products in yields of ≤93% from both ketone- and aldehyde-derived silyl enol ethers, incorporates both terminal and internal alkyne partners, and delivers a variety of decorated systems, including more complex tricyclic structures. Facile removal of the silyl protecting group reveals oxygenated sites for potential further elaboration.


Asunto(s)
Éter , Éteres , Alcoholes , Ciclización , Ciclopentanos , Éteres/química , Estructura Molecular
12.
Sci Adv ; 8(12): eabk0013, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333572

RESUMEN

Uncovering the mechanisms that establish naïve pluripotency in humans is crucial for the future applications of pluripotent stem cells including the production of human blastoids. However, the regulatory pathways that control the establishment of naïve pluripotency by reprogramming are largely unknown. Here, we use genome-wide screening to identify essential regulators as well as major impediments of human primed to naïve pluripotent stem cell reprogramming. We discover that factors essential for cell state change do not typically undergo changes at the level of gene expression but rather are repurposed with new functions. Mechanistically, we establish that the variant Polycomb complex PRC1.3 and PRDM14 jointly repress developmental and gene regulatory factors to ensure naïve cell reprogramming. In addition, small-molecule inhibitors of reprogramming impediments improve naïve cell reprogramming beyond current methods. Collectively, this work defines the principles controlling the establishment of human naïve pluripotency and also provides new insights into mechanisms that destabilize and reconfigure cell identity during cell state transitions.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes , Complejo Represivo Polycomb 1 , Diferenciación Celular , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes/citología , Complejo Represivo Polycomb 1/metabolismo
13.
Ann Clin Biochem ; 59(3): 171-177, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34958262

RESUMEN

OBJECTIVE: NICE recommends measurement of faecal haemoglobin (f-Hb) using faecal immunochemical test (FIT) when colorectal cancer is suspected and calprotectin (f-Cal) in the context of inflammatory bowel disease, though neither is disease specific. During the COVID-19 pandemic, f-Hb has been a requirement prior to referral for endoscopy in England; f-Cal is often performed simultaneously. The aim of this study was to investigate test performance of both tests for significant bowel disease in those patients referred. DESIGN: All adult patients with simultaneous measurements of f-Hb and f-Cal between April 2019 and September 2020 were included. For those referred, outcomes were determined from clinical records. RESULTS: 650 patients with simultaneous samples for f-Hb an f-Cal were managed in Primary Care; 319 patients were referred to hospital; SBD was found in 32 (10.0%) (CRC 5, high risk adenomas 5, IBD 22). At a cut-off of 10 µg/g for f-Hb and 200 µg/g for f-Cal, the sensitivity, specificity and negative predictive value for diagnosis of SBD were 84.4%, 58.2% and 96.7% and 68.8%, 89.6% and 95.7%, respectively. Performance of both tests would have enabled diagnosis of two more cases of significant, but non-malignant, bowel disease but required over 4% more referrals for investigation. CONCLUSION: Use of FIT has become established to assist prioritisation of patients for referral from Primary Care. Whilst introduced specifically for CRC, FIT performs well as a rule out for IBD in Primary Care and the use of f-Cal is not required.


Asunto(s)
COVID-19 , Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Adulto , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Detección Precoz del Cáncer , Heces/química , Hemoglobinas/análisis , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Complejo de Antígeno L1 de Leucocito , Sangre Oculta , Pandemias , Atención Primaria de Salud , Sensibilidad y Especificidad
14.
PLoS One ; 16(10): e0258474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34634084

RESUMEN

Rhipidomys (Sigmodontinae, Thomasomyini) has 25 recognized species, with a wide distribution ranging from eastern Panama to northern Argentina. Cytogenetic data has been described for 13 species with 12 of them having 2n = 44 with a high level of autosomal fundamental number (FN) variation, ranging from 46 to 80, assigned to pericentric inversions. The species are grouped in groups with low FN (46-52) and high FN (72-80). In this work the karyotypes of Rhipidomys emiliae (2n = 44, FN = 50) and Rhipidomys mastacalis (2n = 44, FN = 74), were studied by classical cytogenetics and by fluorescence in situ hybridization using telomeric and whole chromosome probes (chromosome painting) of Hylaeamys megacephalus (HME). Chromosome painting revealed homology between 36 segments of REM and 37 of RMA. We tested the hypothesis that pericentric inversions are the predominant chromosomal rearrangements responsible for karyotypic divergence between these species, as proposed in literature. Our results show that the genomic diversification between the karyotypes of the two species resulted from translocations, centromeric repositioning and pericentric inversions. The chromosomal evolution in Rhipidomys was associated with karyotypical orthoselection. The HME probes revealed that seven syntenic probably ancestral blocks for Sigmodontinae are present in Rhipidomys. An additional syntenic block described here is suggested as part of the subfamily ancestral karyotype. We also define five synapomorphies that can be used as chromosomal signatures for Rhipidomys.


Asunto(s)
Sigmodontinae , Animales , Hibridación Fluorescente in Situ , Roedores
15.
Sensors (Basel) ; 21(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068586

RESUMEN

Lab-based X-ray computed tomography (XCT) systems use X-ray sources that emit a polychromatic X-ray spectrum and detectors that do not detect all X-ray photons with the same efficiency. A consequence of using a polychromatic X-ray source is that beam hardening artefacts may be present in the reconstructed data, and the presence of such artefacts can degrade XCT image quality and affect quantitative analysis. If the product of the X-ray spectrum and the quantum detection efficiency (QDE) of the detector are known, alongside the material of the scanned object, then beam hardening artefacts can be corrected algorithmically. In this work, a method for estimating the product of the X-ray spectrum and the detector's QDE is offered. The method approximates the product of the X-ray spectrum and the QDE as a Bézier curve, which requires only eight fitting parameters to be estimated. It is shown experimentally and through simulation that Bézier curves can be used to accurately simulate polychromatic attenuation and hence be used to correct beam hardening artefacts. The proposed method is tested using measured attenuation data and then used to calculate a beam hardening correction for an aluminium workpiece; the beam hardening correction leads to an increase in the contrast-to-noise ratio of the XCT data by 41% and the removal of cupping artefacts. Deriving beam hardening corrections in this manner is more versatile than using conventional material-specific step wedges.

16.
BMC Ecol Evol ; 21(1): 34, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653261

RESUMEN

BACKGROUND: Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1-8, and 38 from microchromosomes 9-28. RESULTS: The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. CONCLUSIONS: Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.


Asunto(s)
Pintura Cromosómica , Passeriformes , Animales , Cromosomas Artificiales Bacterianos , Evolución Molecular , Cariotipo
17.
BMC Ecol Evol ; 21(1): 8, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33514318

RESUMEN

BACKGROUND: The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. RESULTS: The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. CONCLUSION: Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.


Asunto(s)
Charadriiformes , Pintura Cromosómica , Animales , Aves/genética , Charadriiformes/genética , Evolución Molecular , Hibridación Fluorescente in Situ
18.
Genet Mol Biol ; 43(4): e20200149, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33306775

RESUMEN

Rodents of the genus Cerradomys belong to the tribe Oryzomyini and present high chromosome variability with diploid numbers ranging from 2n=46 to 60. Classical cytogenetics and fluorescence in situ hybridization (FISH) with telomeric and whole chromosome-specific probes of another Oryzomyini, Oligoryzomys moojeni (OMO), were used to assess the karyotype evolution of the genus. Results were integrated into a molecular phylogeny to infer the hypothetical direction of chromosome changes. The telomeric FISH showed signals in telomeres in species that diverged early in the phylogeny, plus interstitial telomeric signals (ITS) in some species from the most derived clades (C. langguthi, C. vivoi, C. goytaca, and C. subflavus). Chromosome painting revealed homology from 23 segments of C. maracajuensis and C. marinhus to 32 of C. vivoi. Extensive chromosome reorganization was responsible for karyotypic differences in closely related species. Major drivers for genomic reshuffling were in tandem and centric fusion, fission, paracentric and pericentric inversions or centromere repositioning. Chromosome evolution was associated with an increase and decrease in diploid number in different lineages and ITS indicate remnants of ancient telomeres. Cytogenetics results corroborates that C. goytaca is not a junior synonym of C. subflavus since the karyotypic differences found may lead to reproductive isolation.

19.
PLoS One ; 15(10): e0241495, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119689

RESUMEN

The genus Oecomys (Rodentia, Sigmodontinae) is distributed from southern Central America to southeastern Brazil in South America. It currently comprises 18 species, but multidisciplinary approaches such as karyotypic, morphological and molecular studies have shown that there is a greater diversity within some lineages than others. In particular, it has been proposed that O. paricola constitutes a species complex with three evolutionary units, which have been called the northern, eastern and western clades. Aiming to clarify the taxonomic status of O. paricola and determine the relevant chromosomal rearrangements, we investigated the karyotypes of samples from eastern Amazonia by chromosomal banding and FISH with Hylaeamys megacephalus (HME) whole-chromosome probes. We detected three cytotypes for O. paricola: A (OPA-A; 2n = 72, FN = 75), B (OPA-B; 2n = 70, FN = 75) and C (OPA-C; 2n = 70, FN = 72). Comparative chromosome painting showed that fusions/fissions, translocations and pericentric inversions or centromeric repositioning were responsible for the karyotypic divergence. We also detected exclusive chromosomal signatures that can be used as phylogenetic markers. Our analysis of karyotypic and distribution information indicates that OPA-A, OPA-B and OPA-C are three distinct species that belong to the eastern clade, with sympatry occurring between two of them, and that the "paricola group" is more diverse than was previously thought.


Asunto(s)
Variación Genética , Cariotipo , Sigmodontinae/genética , Animales , Cromosomas de los Mamíferos/genética , Análisis Citogenético
20.
Front Genet ; 11: 721, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754200

RESUMEN

Myiopsitta monachus is a small Neotropical parrot (Psittaciformes: Arini Tribe) from subtropical and temperate regions of South America. It has a diploid chromosome number 2n = 48, different from other members of the Arini Tribe that have usually 70 chromosomes. The species has the lowest 2n within the Arini Tribe. In this study, we combined comparative chromosome painting with probes generated from chromosomes of Gallus gallus and Leucopternis albicollis, and FISH with bacterial artificial chromosomes (BACs) selected from the genome library of G. gallus with the aim to shed light on the dynamics of genome reorganization in M. monachus in the phylogenetic context. The homology maps showed a great number of fissions in macrochromosomes, and many fusions between microchromosomes and fragments of macrochromosomes. Our phylogenetic analysis by Maximum Parsimony agree with molecular data, placing M. monachus in a basal position within the Arini Tribe, together with Amazona aestiva (short tailed species). In M. monachus many chromosome rearrangements were found to represent autopomorphic characters, indicating that after this species split as an independent branch, an intensive karyotype reorganization took place. In addition, our results show that M. monachus probes generated by flow cytometry provide novel cytogenetic tools for the detection of avian chromosome rearrangements, since this species presents breakpoints that have not been described in other species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...