Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann N Y Acad Sci ; 1450(1): 204-220, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31257609

RESUMEN

Decreased oxygen availability at high altitude requires physiological adjustments allowing for adequate tissue oxygenation. One such mechanism is a slow increase in the hemoglobin concentration ([Hb]) resulting in elevated [Hb] in high-altitude residents. Diagnosis of anemia at different altitudes requires reference values for [Hb]. Our aim was to establish such values based on published data of residents living at different altitudes by applying meta-analysis and multiple regressions. Results show that [Hb] is increased in all high-altitude residents. However, the magnitude of increase varies among the regions analyzed and among ethnic groups within a region. The highest increase was found in residents of the Andes (1 g/dL/1000 m), but this increment was smaller in all other regions of the world (0.6 g/dL/1000 m). While sufficient data exist for adult males and females showing that sex differences in [Hb] persist with altitude, data for infants, children, and pregnant women are incomplete preventing such analyses. Because WHO reference values were originally based on [Hb] of South American people, we conclude that individual reference values have to be defined for ethnic groups to reliably diagnose anemia and erythrocytosis in high-altitude residents. Future studies need to test their applicability for children of different ages and pregnant women.


Asunto(s)
Altitud , Anemia/diagnóstico , Hemoglobinas/análisis , Caracteres Sexuales , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Anemia/sangre , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Embarazo , Valores de Referencia , Adulto Joven
2.
Front Immunol ; 8: 707, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28670316

RESUMEN

Canonical or classical transient receptor potential channel 6 (TRPC6) is a Ca2+-permeable non-selective cation channel that is widely expressed in the heart, lung, and vascular tissues. The use of TRPC6-deficient ("knockout") mice has provided important insights into the role of TRPC6 in normal physiology and disease states of the pulmonary vasculature. Evidence indicates that TRPC6 is a key regulator of acute hypoxic pulmonary vasoconstriction. Moreover, several studies implicated TRPC6 in the pathogenesis of pulmonary hypertension. Furthermore, a unique genetic variation in the TRPC6 gene promoter has been identified, which might link the inflammatory response to the upregulation of TRPC6 expression and ultimate development of pulmonary vascular abnormalities in idiopathic pulmonary arterial hypertension. Additionally, TRPC6 is critically involved in the regulation of pulmonary vascular permeability and lung edema formation during endotoxin or ischemia/reperfusion-induced acute lung injury. In this review, we will summarize latest findings on the role of TRPC6 in the pulmonary vasculature.

3.
Circ Res ; 121(4): 424-438, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28620066

RESUMEN

RATIONALE: Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as a critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and the mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing, remain unresolved. OBJECTIVES: To investigate the role of the pulmonary-specific isoform 2 of subunit 4 of the mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. METHODS AND RESULTS: Isolated ventilated and perfused lungs from Cox4i2-/- mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2-/- mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild-type PASMCs was absent in Cox4i2-/- PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving the functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in wild-type but not Cox4i2-/- PASMCs. Downstream signaling determined by patch-clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2-/- PASMCs compared with wild-type PASMCs, which could be normalized by the application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. CONCLUSIONS: Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion to hydrogen peroxide, contributes to cellular membrane depolarization and HPV. These findings provide a new model for oxygen-sensing processes in the lung and possibly also in other organs.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Pulmón/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo , Animales , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Noqueados , Mitocondrias/genética
4.
Pflugers Arch ; 468(1): 23-41, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26424109

RESUMEN

In the lung, acute alveolar hypoxia causes hypoxic pulmonary vasoconstriction (HPV) to maintain ventilation perfusion matching and thus optimal oxygenation of blood. In contrast, global chronic hypoxia triggers a pathological thickening of pulmonary arterial walls, called pulmonary vascular remodelling, leading to persistence of pulmonary hypertension (PH). Moreover, ischaemia or hypoxia can lead to a damage of pulmonary endothelial cells with subsequent oedema formation. Alterations in reactive oxygen species (ROS) have been suggested as a crucial mediator of such responses. Among the various sources of cellular ROS production, NADPH oxidases (NOXs) have been found to contribute to these physiological and pathophysiological signalling processes. NOXs are the only known examples that generate ROS as the primary function of the enzyme system. However, the downstream targets of NOX-derived ROS signalling in hypoxia are still not known. Canonical transient receptor potential (TRPC) channels recently have been recognised as directly or indirectly ROS-activated channels and have been shown to be essential for hypoxia-dependent vascular regulatory processes in the lung. Against this background, we here summarise the current knowledge on NOX-mediated TRPC channel signalling during hypoxia in the pulmonary circulation.


Asunto(s)
Hipoxia/metabolismo , NADPH Oxidasas/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Humanos , Especies Reactivas de Oxígeno , Transducción de Señal
5.
Am J Respir Crit Care Med ; 188(12): 1451-9, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24251695

RESUMEN

RATIONALE: Pulmonary hypertension (PH) is a life-threatening disease, characterized by pulmonary vascular remodeling. Abnormal smooth muscle cell proliferation is a primary hallmark of chronic hypoxia-induced PH. Essential for cell growth are alterations in the intracellular Ca(2+) homeostasis. Classical transient receptor potential (TRPC) proteins have been suggested to contribute to PH development, as TRPC1 and TRPC6 are predominantly expressed in precapillary pulmonary arterial smooth muscle cells (PASMC). Studies in a TRPC6-deficient mouse model revealed an essential function of TRPC6 in acute but not in chronic hypoxia. OBJECTIVES: We aimed to identify the importance of TRPC1 in the pathogenesis of chronic hypoxia-induced PH in mice. METHODS: TRPC1 expression analysis was performed using real-time polymerase chain reaction. TRPC1 function was assessed by in vivo experiments in TRPC1(-/-) animals as well as in isolated precapillary murine PASMC after TRPC1 knockdown by TRPC1-specific small interfering RNAs. MEASUREMENTS AND MAIN RESULTS: Only TRPC1 mRNA was up-regulated under hypoxia in isolated murine PASMC (1% O2 for 72 h). Hypoxia-induced proliferation of murine PASMC was attenuated in cells treated with small interfering RNA against TRPC1 and in cells isolated from TRPC1(-/-) animals compared with untreated and wild-type cells. TRPC1(-/-) mice did not develop PH in response to chronic hypoxia (FI(O2) 0.10 for 21 d) and had less vascular muscularization but a similar degree of right ventricular hypertrophy compared with wild-type mice. CONCLUSIONS: Our results indicate an important role of TRPC1 in pulmonary vascular remodeling underlying the development of hypoxia-induced PH.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Canales Catiónicos TRPC/metabolismo , Animales , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Enfermedad Crónica , Femenino , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Canales Catiónicos TRPC/deficiencia , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...