Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12511-12518, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38669671

RESUMEN

Phthalimide-N-oxyl (PINO) and related radicals are promising catalysts for C-H functionalization reactions. To date, only a small number of N-oxyl derivatives have demonstrated improved activities over PINO. We postulate that the lack of success in identifying superior catalysts is associated not only with challenges in the design and synthesis of new structures, but also the way catalysts are evaluated and utilized. Catalyst evaluation typically relies on the use of chemical oxidants to generate N-oxyl radicals from their parent N-hydroxy compounds. Herein we provide an example where a potential-controlled electrochemical analysis reveals that succinimide-N-oxyl (SINO) compares favorably to PINO as a hydrogen atom transfer (HAT) catalyst-in contrast to previous claims based on other approaches. Our efforts to understand the basis for the greater reactivity of SINO relative to PINO have underscored that the HAT kinetics are significantly influenced by factors beyond changes in thermodynamics. This is perhaps best illustrated by the similar reactivity of tetrachloro-PINO and SINO despite the latter engaging in substantially more exergonic reactions. The key role of HAT transition state (TS) polarization prompted the design and initial characterization of a chlorinated SINO derivative, which we found to be the most reactive N-oxyl HAT catalyst reported to date.

2.
Angew Chem Int Ed Engl ; 63(21): e202315917, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38437456

RESUMEN

The design of N-oxyl hydrogen atom transfer catalysts has proven challenging to date. Previous efforts have focused on the functionalization of the archetype, phthalimide-N-oxyl. Driven in part by the limited options for modification of this structure, this strategy has provided only modest improvements in reactivity and/or solubility. Our previous mechanistic efforts suggested that while the electron-withdrawing carbonyls of the phthalimide are necessary to maximize the O-H bond dissociation enthalpy of the HAT product hydroxylamine and overall reaction thermodynamics, they undergo nucleophilic substitution leading to catalyst decomposition. In an attempt to minimize this vulnerability, we report the characterization of N-oxyl catalysts wherein the aryl ring in PINO is replaced with the combination of a substituted heteroatom and quaternary carbon. By rendering one carbonyl carbon less electrophilic and the other less sterically accessible, the corresponding N1-aryl-hydantoin-N3-oxyl radical showed significantly higher stability than PINO as well as a modest improvement in reactivity. This proof-of-principle in new scaffold design may accelerate future HAT catalyst discovery and development.

3.
J Am Chem Soc ; 145(50): 27616-27625, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051913

RESUMEN

Electrosynthesis of single-crystalline metallic and intermetallic particles with a preferred orientation onto liquid metal electrodes has been performed. Liquid gallium electrodes immersed in aqueous alkaline electrolytes without any molecular additive or external solid seeding substrates were used to electroreduce separately Pb2+, Bi3+, Pd2+, and Mn2+. The crystallinity, composition, and orientation of the electrodeposition products were characterized by using scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Electrodeposition of Pb and Bi results in the incipient formation of two-dimensional (2D) nuclei that subsequently direct the growth of Pb and Bi single crystals along the most close-packed [111] and [0001] directions, respectively. The absence of any intervening surface oxides and a low electroreduction flux are necessary to avoid polycrystalline dendrite formation. Under comparable conditions, the electrodeposition of Pd and Mn results in single-crystalline intermetallic particles at the interface. Each crystal exhibits a preferred orientation consistent with the unique atomic packing of the near-surface region of the liquid Ga. The presented study suggests a new concept in electrodeposition processes where the liquid metal structure imparts quasi-epitaxial growth in a system in which the electrode material specifically has no crystallinity or long-range order. This study is thus the first demonstration of highly oriented electrodeposition at a liquid/liquid interface under ambient conditions, highlighting the unique solvation environment of liquid metal interfaces for forming thin metallic and intermetallic films.

4.
Nat Rev Chem ; 7(9): 653-666, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37464019

RESUMEN

Phthalimide-N-oxyl (PINO) is a valuable hydrogen-atom-transfer (HAT) catalyst for selective C-H functionalization. To advance and optimize PINO-catalysed HAT reactions, researchers have been focused on modifying the phthalimide core structure. Despite much effort and some notable advances, the modifications to date have centred on optimization of a single parameter of the catalyst, such as reactivity, solubility or stability. Unfortunately, the optimization with respect to one parameter is often associated with a worsening of the others. The derivation of a single catalyst structure with optimal performance across multiple parameters has therefore remained elusive. Here we present an analysis of the structure-activity relationships of PINO and its derivatives as HAT catalysts, which we hope will stimulate further development of PINO-catalysed HAT reactions and, ultimately, lead to much improved catalysts for real-world applications.

5.
Acc Chem Res ; 56(13): 1685-1686, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401245
6.
Anal Chem ; 95(17): 6818-6827, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37075319

RESUMEN

The steady-state voltammetric responses of n-type Si(100) semiconductor ultramicroelectrodes (SUMEs) immersed in air- and water-free methanolic electrolytes have been measured. The response characteristics of these SUMEs in the absence of illumination were modeled and understood through a framework that describes the distribution of the applied potential across the semiconductor/electrolyte contact using four discrete regions: the semiconductor space charge, surface, Helmholtz, and diffuse layers. The latter region was described by the full Gouy-Chapman model. This framework afforded insight on how relevant parameters such as the semiconductor band edge potentials, the reorganization energies for charge transfer, the standard potential of redox species in solution, the density and energy of surface state populations, and the presence of an insulating (tunneling) layer individually and collectively dictate the observable current-potential responses. With this information, the methoxylation of Si surfaces was evaluated by analysis of the change in voltammetric responses during the course of prolonged immersion in methanol. The electrochemical data were consistent with a surface methoxylation mechanism that depended on the standard potential of redox species dissolved in solution. Estimates of the enthalpies of adsorption as well as the potential-dependent rate constant for surface methoxylation were obtained. Collectively, these measurements supported the contention that the rates of Si surface reactions can be systematically tuned by exposure to dissolved outer-sphere electron acceptors. Moreover, the data represent the quantitative utility of voltammetry with SUMEs for the measurement of semiconductor/liquid contacts.

7.
Acc Chem Res ; 56(7): 846-855, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921297

RESUMEN

ConspectusThis Account describes and summarizes the latest work from our laboratory on developing and maturing strategies based on low-temperature liquid metals as reaction environments for materials synthesis. The electrochemical liquid-liquid-solid (ec-LLS) crystal growth concept is a hybrid method that combines electrodeposition and melt crystal growth. Using liquid metals as both electrodes and solvents for the purpose of producing inorganic crystals and materials, a simple and environmentally friendly process is possible. The impetus is to address the key deficiency in the inorganic crystalline materials that are the basis of modern optoelectronics and renewable energy capture/conversion systems. Specifically, existing methods for synthesizing crystalline inorganic materials for these purposes are largely energy- and resource-intensive, with a substantial impact on the environment when scaled. A long-term goal of our work with ec-LLS is to realize a materials synthetic process that is matured without requiring intensive resources or negatively impacting the environment. To this end, the factors that both limit and govern ec-LLS processes must be identified and understood. To date, questions regarding the factors that affect crystal nucleation and growth, form factors, and overall composition remain.Previous work established concretely ec-LLS as a versatile method for synthesizing and producing crystalline semiconductors at low temperatures as either particles, nanowires, or microwires. Subsequent experiments have focused on two tiers. First, the microscopic details of the liquid metal and its interfaces that dictate materials synthesis and crystal growth must be identified. Second, strategies that widen the attainable material form factors to facilitate device architectures must be realized. Hence, this Account describes results aimed at answering three questions: (1) What are the consequences of reaching supersaturation by an electrochemical rather than a thermal driving force for crystal growth in ec-LLS? (2) Can the location of nucleation and subsequent crystal growth be controlled? (3) Does the atomic structure of the liquid metal affect product formation in ec-LLS? The science described herein illustrates the value of in situ methods spanning transmission electron microscopy, X-ray diffraction, and X-ray reflectance for revealing the role that liquid metal composition and structure can play in ec-LLS. Additionally, we summarize work that shows for the first time that it is possible to produce both single-crystalline epitaxial films and complex intermetallic compounds through ec-LLS by tuning the cell design, electrochemical excitation waveform, and composition of the liquid metal electrodes.The cumulative findings described here substantially enrich our understanding of the ec-LLS concept while simultaneously motivating further questions moving forward. Is it possible to attain complete control over the crystalline quality and composition of ec-LLS products? Can the materials produced by ec-LLS provide tailored functional properties for targeted applications? Can the ec-LLS strategy be further refined to allow material synthesis and deposition at precise locations with deterministically chosen form factors? What synthetic pathways are accessible when even more sophisticated electrochemical waveforms and cell designs are used? Our hope is that this Account will spur additional researchers to help answer such questions.

8.
Proc Natl Acad Sci U S A ; 119(36): e2202395119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037382

RESUMEN

A detailed framework for modeling and interpreting the data in totality from a cyclic voltammetric measurement of adsorbed redox monolayers on semiconductor electrodes has been developed. A three-layer model consisting of the semiconductor space-charge layer, a surface layer, and an electrolyte layer is presented that articulates the interplay between electrostatic, thermodynamic, and kinetic factors in the electrochemistry of a redox adsorbate on a semiconductor. Expressions are derived that describe the charging and faradaic current densities individually, and an algorithm is demonstrated that allows for the calculation of the total current density in a cyclic voltammetry measurement as a function of changes in the physical properties of the system (e.g., surface recombination, dielectric property of the surface layer, and electrolyte concentration). The most profound point from this analysis is that the faradaic and charging current densities can be coupled. That is, the common assumption that these contributions to the total current are always independent is not accurate. Their interrelation can influence the interpretation of the charge-transfer kinetics under certain experimental conditions. More generally, this work not only fills a long-standing knowledge gap in electrochemistry but also aids practitioners advancing energy conversion/storage strategies based on redox adsorbates on semiconductor electrodes.


Asunto(s)
Electroquímica , Electrodos , Semiconductores , Electrólitos , Oxidación-Reducción
9.
J Am Chem Soc ; 144(14): 6410-6419, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35362961

RESUMEN

A framework for interpreting the cyclic voltammetric responses from adsorbed redox monolayers on semiconductor electrodes has been developed. Expressions that describe quantitatively how the rates of the forward and back charge-transfer reactions impact the faradaic current density are presented. The primary insight is an explicit connection between the potential drops across the semiconductor space charge, surface, and electrolyte diffuse layers and the potential dependence of the reaction kinetics. Specifically, the evolution of the voltammetric shapes with experimental variables such as scan rate, standard potential of the redox adsorbate, and semiconductor surface energetics can now be interpreted for information on the operative charge-transfer rate constant and reaction energetics. This model is used to understand the complex dependence of the cathodic and anodic wave shapes for the first redox transition of an asymmetric viologen species adsorbed on n-Si(111). This system exhibited a heterogeneous rate constant of 0.24 s-1 and exhibited features consistent with an overwhelming majority of the applied potential dropping within the semiconductor space charge region. In total, experimentalists now have a visual key on how to interpret the faradaic current in voltammetric data for information on heterogeneous charge-transfer reactions between semiconductor electrodes and molecular adsorbates. The presented approach fills a long-standing knowledge gap in electrochemistry and aids practitioners interested in advancing photoelectrochemical energy conversion/storage strategies.

10.
Anal Chem ; 93(37): 12672-12681, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34498854

RESUMEN

A new algorithm that describes the faradaic current for elementary redox reactions in the cyclic voltammetric responses of persistently adsorbed species on metal electrodes at any scan rate is presented. This work does not assume electrochemical reversibility and instead demonstrates a set of equations that encapsulate how the forward and back charge-transfer rate constants influence the data as a function of the experimental time scale. The method presented here is compared against other approaches that rely on either finite-difference calculations or that require numerical approximation of improper integrals (i.e., ±infinity as a bound). The method here demonstrates that the current-potential data can be described by incomplete gamma functions, whose two arguments capture the relevant kinetic variables. Following the notation for the Butler-Volmer model of charge transfer, exact solutions are presented for the cases of the charge-transfer coefficient, α, equal to 1 or 0. A related algorithm based on these results affords calculation of current-potential data for 0 < α < 1, allowing comprehensive analysis (i.e., point by point) of voltammetric data throughout the reversible, quasi-reversible, and irreversible regimes. Accordingly, this work represents an alternative to the method of Laviron, i.e., analyzing just the peak splitting values, for experimentalists to understand and interpret their voltammetric data in totality.


Asunto(s)
Algoritmos , Electrodos , Cinética , Oxidación-Reducción
11.
J Am Chem Soc ; 143(27): 10324-10332, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34213314

RESUMEN

Phthalimide N-oxyl (PINO) is a potent hydrogen atom transfer (HAT) catalyst that can be generated electrochemically from N-hydroxyphthalimide (NHPI). However, catalyst decomposition has limited its application. This paper details mechanistic studies of the generation and decomposition of PINO under electrochemical conditions. Voltammetric data, observations from bulk electrolysis, and computational studies suggest two primary aspects. First, base-promoted formation of PINO from NHPI occurs via multiple-site concerted proton-electron transfer (MS-CPET). Second, PINO decomposition occurs by at least two second-order paths, one of which is greatly enhanced by base. Optimal catalytic efficiency in PINO-catalyzed oxidations occurs in the presence of bases whose corresponding conjugate acids have pKa's in the range of ∼11-15, which strikes a balance between promoting PINO formation and minimizing its decay.

12.
J Org Chem ; 86(22): 15927-15934, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34110161

RESUMEN

Lignin provides a potential sustainable source for production of electron-rich aromatic compounds. Recently, electrochemical lignin degradation via an oxidation/reduction sequence under mild conditions has garnered much attention within the lignin community, as electrochemistry simplifies redox reactions and offers an electron source/sink for synthesis without using stoichiometric oxidants or reductants. This paper describes a fundamental approach for the electrochemical fragmentation of the primary connection in native lignin, ß-O-4. Potential-controlled electrolysis enables selective reduction and provides fragmentation products and/or coupling products in isolated yields of 59-92%.


Asunto(s)
Lignina , Electroquímica , Lignina/metabolismo , Oxidación-Reducción
13.
ACS Appl Mater Interfaces ; 12(51): 57560-57568, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33307671

RESUMEN

An examination of the efficacy of combining physisorbed and chemisorbed passivation strategies on crystalline Si has been performed. This report compares the influence of a linear alkyl adsorbate tethered by either a Si-C or Si-Si linkage, prepared by reaction of Si(111) with organometallic Grignard reagents or organosilanes, respectively. These modified surfaces are first analyzed and compared by IR and X-ray photoelectron spectroscopies. Their behavior toward a known potent physisorbate, trifluoromethanesulfonic anhydride (Tf2O), is then examined. Microwave photoconductivity measurements were obtained which indicate that, while Tf2O shows a beneficial lowering of surface recombination on both surface types initially, only surfaces featuring Si-C linkages exhibit long-lasting suppressed surface recombination. The data for Grignard-treated Si after exposure to Tf2O in fact represent the longest known report of surface recombination suppression by a physisorbate. Conversely, the data for the Si surfaces prepared by dehydrogenative coupling suggest that these passivating groups themselves introduce defect states that cannot be ameliorated by Tf2O physisorption.

14.
ACS Nano ; 14(3): 2869-2879, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32083842

RESUMEN

The growth of Ge nanowires in water inside a liquid transmission electron microscope (TEM) holder has been demonstrated at room temperature. Each nanowire growth event was stimulated by the incident electron beam on otherwise unsupported liquid Ga or liquid In nanodroplets. A variety of conditions were explored, including liquid metal nanodroplet surface condition, liquid metal nanodroplet size and density, formal concentration of dissolved GeO2, and electron beam intensity. The cumulative observations from a series of videos recorded during growth events suggested the following points. First, the conditions necessary for initiating nanowire growth at uncontacted liquid metal nanodroplets in a liquid TEM cell indicate the process was governed by solvated electrons generated from secondary electrons scattered by the liquid metal nanodroplets. The attained current densities were comparable to those achieved in conventional electrochemical liquid-liquid-solid (ec-LLS) growths outside of a TEM. Second, the surface condition of the liquid metal nanodroplets was quite influential on whether nanowire growth occurred and surface diffusion of Ge adatoms contributed to the rate of crystallization. Third, the Ge nanowire growth rates were limited by the feed rate of Ge to the crystal growth front rather than the rate of crystallization at the liquid metal/solid Ge interface. Estimates of an electrochemical current for the reduction of dissolved GeO2 were nominally in line with currents used for Ge nanowire growth by ec-LLS outside of the TEM. Fourth, the Ge nanowire growths in the liquid TEM cell occurred far from thermodynamic equilibrium, with supersaturation values of 104 prior to nucleation. These collective points provide insight on how to further control and improve Ge nanowire morphology and crystallographic quality by the ec-LLS method.

16.
ACS Appl Mater Interfaces ; 11(32): 29065-29071, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31319667

RESUMEN

We demonstrate structural colors produced by a simple, inexpensive, and nontoxic electrodeposition process. Asymmetric metal-dielectric-metal (MDM) multilayered structures were achieved by sequential electrodeposition of smooth gold, thin cuprous oxide, and finally thin gold on conductive substrates, forming an effective optical cavity with angle-insensitive characteristics. Different colors of high brightness were achieved by simply tuning the thickness of the electrodeposited middle cavity layer. This process is compatible with highly nonplanar substrates of arbitrary shape, size, and roughness. This work is the first demonstration of solution-processed, electrodeposited, MDM film stacks that are uniform over large areas and highlights the clear advantages of this approach over traditional deposition or assembly methods for preparing colored films.

17.
ACS Appl Mater Interfaces ; 11(28): 25115-25122, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31264402

RESUMEN

Catalytic MoSx thin films have been directly photoelectrodeposited on GaInP2 photocathodes for stable photoelectrochemical hydrogen generation. Specifically, the MoSx deposition conditions were controlled to obtain 8-10 nm films directly on p-GaInP2 substrates without ancillary protective layers. The films were nominally composed of MoS2, with additional MoOxSy and MoO3 species detected and showed no long-range crystalline order. The as-deposited material showed excellent catalytic activity toward the hydrogen evolution reaction relative to bare p-GaInP2. Notably, no appreciable photocurrent reduction was incurred by the addition of the photoelectrodeposited MoSx catalyst to the GaInP2 photocathode under light-limited operating conditions, highlighting the advantageous optical properties of the film. The MoSx catalyst also imparted enhanced durability toward photoelectrochemical hydrogen evolution in acidic conditions, maintaining nearly 85% of the initial photocurrent after 50 h of electrolysis. In total, this work demonstrates a simple method for producing dual-function catalyst/protective layers directly on high-performance, planar III-V photoelectrodes for photoelectrochemical energy conversion.

18.
Anal Chem ; 90(20): 12261-12269, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30264995

RESUMEN

Semiconductor ultramicroelectrodes (SUMEs) were prepared by photolithographic patterning of defined pinholes in dielectric coatings on semiconductor wafers. Methods are reported for interpreting their electrochemical response characteristics in the absence of illumination. Radial diffusion is reconciled with the diode equation to describe the full voltammetric response, allowing direct determination of heterogeneous charge-transfer rate constants and surface quality. The voltammetric responses of n-type Si SUMEs were assessed and showed prototypical UME characteristics with obtainable current densities higher than those of conventional macroscopic electrodes. The SUME voltammetry proved highly sensitive to both native and intentionally grown oxides, highlighting their ability to precisely track dynamic surface conditions reliably through electrochemical measurement. Subsequently, electron transfer from the conduction band of n-Si SUMEs to aqueous Ru(NH3)63+ was determined to occur near optimal exoergicity. In total, this work validates the SUME platform as a new tool to study fundamental charge-transfer properties at semiconductor/liquid junctions.

19.
ACS Appl Mater Interfaces ; 10(2): 2004-2015, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29240401

RESUMEN

Reduced graphene oxide (RGO) films have been prepared by immersion of graphene oxide (GO) films at room temperature in nonaqueous solutions containing simple, outer-sphere metallocene reductants. Specifically, solutions of cobaltocene, cobaltocene and trifluoroacetic acid (TFA), and decamethylcobaltocene each showed activity for the rapid reduction of GO films cast on a wide variety of substrates. Each reactant increased the conductivity of the films by several orders of magnitude, with RGO films prepared with either decamethylcobaltocene or cobaltocene and TFA possessing the highest conductivities (∼104 S m-1). X-ray photoelectron spectroscopy suggested that while all three reagents lowered the content of carbon-oxygen functionalities, solutions of cobaltocene and TFA were the most effective at reducing the material to sp2 carbon. Separately, Raman spectra and atomic force micrographs indicated that RGO films prepared with decamethylcobaltocene consisted of the largest graphitic domains and lowest macroscopic roughness. Cumulatively, the data suggest that the outer-sphere reductants can affect the conversion to RGO but the reactivity and mechanism depend on the standard potential of the reductant and the availability of protons. This work both demonstrates a new way to prepare high-quality RGO films on a wide range of substrate materials without annealing and motivates future work to elucidate the chemistry of RGO synthesis through the tunability of outer-sphere reductants such as metallocenes.

20.
J Am Chem Soc ; 139(20): 6960-6968, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28485966

RESUMEN

Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...