Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36987016

RESUMEN

Compared to agrochemicals, bioinoculants based on plant microbiomes are a sustainable option for increasing crop yields and soil fertility. From the Mexican maize landrace "Raza cónico" (red and blue varieties), we identified yeasts and evaluated in vitro their ability to promote plant growth. Auxin production was detected from yeast isolates and confirmed using Arabidopsis thaliana plants. Inoculation tests were performed on maize, and morphological parameters were measured. Eighty-seven yeast strains were obtained (50 from blue corn and 37 from red corn). These were associated with three families of Ascomycota (Dothideaceae, Debaryomycetaceae, and Metschnikowiaceae) and five families of Basidiomycota (Sporidiobolaceae, Filobasidiaceae, Piskurozymaceae, Tremellaceae, and Rhynchogastremataceae), and, in turn, distributed in 10 genera (Clavispora, Rhodotorula, Papiliotrema, Candida, Suhomyces, Soliccocozyma, Saitozyma Holtermaniella, Naganishia, and Aeurobasidium). We identified strains that solubilized phosphate and produced siderophores, proteases, pectinases, and cellulases but did not produce amylases. Solicoccozyma sp. RY31, C. lusitaniae Y11, R. glutinis Y23, and Naganishia sp. Y52 produced auxins from L-Trp (11.9-52 µg/mL) and root exudates (1.3-22.5 µg/mL). Furthermore, they stimulated the root development of A. thaliana. Inoculation of auxin-producing yeasts caused a 1.5-fold increase in maize plant height, fresh weight, and root length compared to uninoculated controls. Overall, maize landraces harbor plant growth-promoting yeasts and have the potential for use as agricultural biofertilizers.

2.
Arch Microbiol ; 204(3): 180, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35175407

RESUMEN

Environmental pollution as a result of heavy metals (HMs) is a worldwide problem and the implementation of eco-friendly remediation technologies is thus required. Metallophores, low molecular weight compounds, could have important biotechnological applications in the fields of agriculture, medicine, and bioremediation. This study aimed to isolate HM-resistant bacteria from soils and sediments of the Lerma-Chapala Basin and evaluated their abilities to produce metallophores and to promote plant growth. Bacteria from the Lerma-Chapala Basin produced metallophores for all the tested metal ions, presented a greater production of As3+ metallophores, and showed high HM resistance especially to Zn2+, As5+, and Ni2+. A total of 320 bacteria were isolated with 170 strains showing siderophores synthesis. Members of the Delftia and Pseudomonas genera showed above 92 percent siderophore units (psu) during siderophores production and hydroxamate proved to be the most common functional group among the analyzed siderophores. Our results provided evidence that Lerma-Chapala Basin bacteria and their metallophores could potentially be employed in bioremediation processes or may even have potential for applications in other biotechnological fields.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Bacterias/genética , Biodegradación Ambiental , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
3.
Int J Syst Evol Microbiol ; 70(7): 4165-4170, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32539928

RESUMEN

During the isolation of bacteria from the Agave L. rhizosphere in northeast Mexico, four strains with similar BOX-PCR patterns were collected. The 16S rRNA gene sequences of all four strains were very similar to each other and that of the type strains of Cupriavidus metallidurans CH34T (98.49 % sequence similarity) and Cupriavidus necator N-1T (98.35 %). The genome of strain ASC-9842T was sequenced and compared to those of other Cupriavidus species. ANIb and ANIm values with the most closely related species were lower than 95%, while the in silico DNA-DNA hybridization values were also much lower than 70 %, consistent with the proposal that they represent a novel species. This conclusion was supported by additional phenotypic and chemotaxonomic analyses. Therefore, the name Cupriavidus agavae sp. nov. is proposed with the type strain ASC-9842T (=LMG 26414T=CIP 110327T).


Asunto(s)
Agave/microbiología , Cupriavidus/clasificación , Filogenia , Rizosfera , Técnicas de Tipificación Bacteriana , Composición de Base , Cupriavidus/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , México , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
Arch Microbiol ; 200(6): 883-895, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29476206

RESUMEN

Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As5+) and arsenite (As3+), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (arsC), and arsenite transporter (arsB) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas, and Staphylococcus. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As5+ and 10-20 mM for As3+. Eleven isolates presented dual abilities of As5+ reduction and As3+ oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As5+ and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As3+ under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As5+ and As3+, respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process.


Asunto(s)
Arsénico/metabolismo , Bacterias/aislamiento & purificación , Endófitos/metabolismo , Magnoliopsida/microbiología , Prosopis/microbiología , Arseniatos/metabolismo , Arsenitos/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , ADN Ribosómico/genética , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Magnoliopsida/metabolismo , México , Minería , Filogenia , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA