Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 38(19): 6036-6048, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35506607

RESUMEN

A mechanistic study is reported for the reactions of singlet oxygen (1O2) with alkene surfactants of tunable properties. Singlet oxygen was generated either top-down (photochemically) by delivery as a gas to an air-water interface or bottom-up (chemically) by transport to the air-water interface as a solvated species. In both cases, reactions were carried out in the presence of 7-carbon (7C), 9-carbon (9C), or 11-carbon (11C) prenylsurfactants [(CH3)2C═CH(CH2)nSO3- Na+ (n = 4, 6, 8)]. Higher "ene" hydroperoxide regioselectivities (secondary ROOH 2 to tertiary ROOH 3) were reached in delivering 1O2 top-down through air as compared to bottom-up via aqueous solution. In the photochemical reaction, ratios of 2:3 increased from 2.5:1 for 7C, to 2.8:1 for 9C, and to 3.2:1 for 11C. In contrast, in the bubbling system that generated 1O2 chemically, the selectivity was all but lost, ranging only from 1.3:1 to 1:1. The phase-dependent regioselectivities appear to be correlated with the "ene" reaction with photochemically generated, drier 1O2 at the air-water interface vs those with wetter 1O2 from the bubbling reactor. Density functional theory-calculated reaction potential energy surfaces (PESs) were used to help rationalize the reaction phase dependence. The reactions in the gas phase are mediated by perepoxide transition states with 32-41 kJ/mol binding energy for C═C(π)···1O2. The perepoxide species, however, evolve to well-defined stationary structures in the aqueous phase, with covalent C-O bonds and 85-88 kJ/mol binding energy. The combined experimental and computational evidence points to a unique mechanism for 1O2 "ene" tunability in a perepoxide continuum from a transition state to an intermediate.

2.
J Org Chem ; 85(19): 12505-12513, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32885660

RESUMEN

Airborne singlet oxygen obtained from photosensitization of triplet dioxygen is shown to react with an alkene surfactant (8-methylnon-7-ene-1 sulfonate) leading to "ene" hydroperoxides that in the dark inactivate planktonic Escherichia coli (E. coli). The "ene" hydroperoxide photoproducts are not toxic on their own, but they become toxic after the bacteria are pretreated with singlet oxygen. The total quenching rate constant (kT) of singlet oxygen of the alkene surfactant was measured to be 1.1 × 106 M-1 s-1 at the air/liquid interface. Through a new mechanism called singlet oxygen priming (SOP), the singlet oxygen leads to hydroperoxides then to peroxyl radicals, tetraoxides, and decomposition products, which also promote disinfection, and therefore offer a "one-two" punch. This offers a strong secondary toxic effect in an otherwise indiscernible dark reaction. The results provide an insight into assisted killing by an exogenous alkene with dark toxicity effects following exposure to singlet oxygen.


Asunto(s)
Escherichia coli , Oxígeno Singlete , Peróxido de Hidrógeno , Oxígeno , Tensoactivos
3.
J Org Chem ; 81(15): 6395-401, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27385423

RESUMEN

Prenylsurfactants [(CH3)2C═CH(CH2)nSO3(-) Na(+) (n = 4, 6, or 8)] were designed to probe the "ene" reaction mechanism of singlet oxygen at the air-water interface. Increasing the number of carbon atoms in the hydrophobic chain caused an increase in the regioselectivity for a secondary rather than tertiary surfactant hydroperoxide, arguing for an orthogonal alkene on water. The use of water, deuterium oxide, and H2O/D2O mixtures helped to distinguish mechanistic alternatives to homogeneous solution conditions that include dewetting of the π bond and an unsymmetrical perepoxide transition state in the hydroperoxide-forming step. The prenylsurfactants and a photoreactor technique allowed a certain degree of interfacial control of the hydroperoxidation reaction on a liquid support, where the oxidant (airborne (1)O2) is delivered as a gas.

4.
Tetrahedron Lett ; 56(30): 4505-4508, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27092011

RESUMEN

The regioselective synthesis of allylic hydroperoxide sulfonates by singlet oxygenation at the air-water interface has been found to depend on the concentration of the alkene sulfonate and added calcium salt. The regioselectivity is proposed to originate from an orthogonal alkene relative to the water surface for preferential methyl hydrogen abstraction by airborne singlet oxygen in an ene reaction. The findings hint that the air-water interface is a locale for synthetic reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...