Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 39(1): e100882, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31750562

RESUMEN

Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic ß cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Intolerancia a la Glucosa/etiología , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Islotes Pancreáticos/patología , Metanfetamina/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Estimulantes del Sistema Nervioso Central/toxicidad , Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Exposición Materna/efectos adversos , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología
2.
EMBO J ; 37(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30209240

RESUMEN

Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Estrés Fisiológico , Neuronas Adrenérgicas/patología , Animales , Factor Neurotrófico Ciliar/genética , Hipotálamo/patología , Locus Coeruleus/patología , Ratones , Ratones Noqueados , Ratas
3.
Mol Metab ; 14: 108-120, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29910119

RESUMEN

OBJECTIVE: Specification of endocrine cell lineages in the developing pancreas relies on extrinsic signals from non-pancreatic tissues, which initiate a cell-autonomous sequence of transcription factor activation and repression switches. The steps in this pathway share reliance on activity-dependent Ca2+ signals. However, the mechanisms by which phasic Ca2+ surges become converted into a dynamic, cell-state-specific and physiologically meaningful code made up by transcription factors constellations remain essentially unknown. METHODS: We used high-resolution histochemistry to explore the coincident expression of secretagogin and transcription factors driving ß cell differentiation. Secretagogin promoter activity was tested in response to genetically manipulating Pax6 and Pax4 expression. Secretagogin null mice were produced with their pancreatic islets morphologically and functionally characterized during fetal development. A proteomic approach was utilized to identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome and verified in vitro by focusing on Pdx1 retention. RESULTS: Here, we show that secretagogin, a Ca2+ sensor protein that controls α and ß cell turnover in adult, is in fact expressed in endocrine pancreas from the inception of lineage segregation in a Pax4-and Pax6-dependent fashion. By genetically and pharmacologically manipulating secretagogin expression and interactome engagement in vitro, we find secretagogin to gate excitation-driven Ca2+ signals for ß cell differentiation and insulin production. Accordingly, secretagogin-/- fetuses retain a non-committed pool of endocrine progenitors that co-express both insulin and glucagon. We identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome complex to prevent Pdx1 degradation through proteasome inactivation. This coincides with retained Nkx6.1, Pax4 and insulin transcription in prospective ß cells. CONCLUSIONS: In sum, secretagogin scales the temporal availability of a Ca2+-dependent transcription factor network to define ß cell identity.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Secretagoginas/metabolismo , Transactivadores/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Insulina/metabolismo , Secreción de Insulina , Ratones Endogámicos C57BL , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Secretagoginas/genética
4.
J Clin Invest ; 128(9): 3757-3768, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29893745

RESUMEN

Pain signals are transmitted by multisynaptic glutamatergic pathways. Their first synapse between primary nociceptors and excitatory spinal interneurons gates the sensory load. In this pathway, glutamate release is orchestrated by Ca2+-sensor proteins, with N-terminal EF-hand Ca2+-binding protein 2 (NECAB2) being particular abundant. However, neither the importance of NECAB2+ neuronal contingents in dorsal root ganglia (DRGs) and spinal cord nor the function determination by NECAB2 has been defined. A combination of histochemical analyses and single-cell RNA-sequencing showed NECAB2 in small- and medium-sized C- and Aδ D-hair low-threshold mechanoreceptors in DRGs, as well as in protein kinase C γ excitatory spinal interneurons. NECAB2 was downregulated by peripheral nerve injury, leading to the hypothesis that NECAB2 loss of function could limit pain sensation. Indeed, Necab2-/- mice reached a pain-free state significantly faster after peripheral inflammation than did WT littermates. Genetic access to transiently activated neurons revealed that a mediodorsal cohort of NECAB2+ neurons mediates inflammatory pain in the mouse spinal dorsal horn. Here, besides dampening excitatory transmission in spinal interneurons, NECAB2 limited pronociceptive brain-derived neurotrophic factor (BDNF) release from sensory afferents. Hoxb8-dependent reinstatement of NECAB2 expression in Necab2-/- mice then demonstrated that spinal and DRG NECAB2 alone could control inflammation-induced sensory hypersensitivity. Overall, we identify NECAB2 as a critical component of pronociceptive pain signaling, whose inactivation offers substantial pain relief.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Proteínas del Ojo/fisiología , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Dolor/etiología , Dolor/fisiopatología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Regulación hacia Abajo , Proteínas del Ojo/genética , Femenino , Ganglios Espinales/fisiopatología , Hiperalgesia/genética , Inflamación/fisiopatología , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nociceptores/fisiología , Dolor/genética , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/fisiopatología , Secretagoginas/deficiencia , Secretagoginas/genética , Secretagoginas/metabolismo , Médula Espinal/fisiopatología , Asta Dorsal de la Médula Espinal/fisiopatología
5.
EMBO J ; 36(14): 2107-2125, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28637794

RESUMEN

Ca2+-sensor proteins are generally implicated in insulin release through SNARE interactions. Here, secretagogin, whose expression in human pancreatic islets correlates with their insulin content and the incidence of type 2 diabetes, is shown to orchestrate an unexpectedly distinct mechanism. Single-cell RNA-seq reveals retained expression of the TRP family members in ß-cells from diabetic donors. Amongst these, pharmacological probing identifies Ca2+-permeable transient receptor potential vanilloid type 1 channels (TRPV1) as potent inducers of secretagogin expression through recruitment of Sp1 transcription factors. Accordingly, agonist stimulation of TRPV1s fails to rescue insulin release from pancreatic islets of glucose intolerant secretagogin knock-out(-/-) mice. However, instead of merely impinging on the SNARE machinery, reduced insulin availability in secretagogin-/- mice is due to ß-cell loss, which is underpinned by the collapse of protein folding and deregulation of secretagogin-dependent USP9X deubiquitinase activity. Therefore, and considering the desensitization of TRPV1s in diabetic pancreata, a TRPV1-to-secretagogin regulatory axis seems critical to maintain the structural integrity and signal competence of ß-cells.


Asunto(s)
Regulación de la Expresión Génica , Células Secretoras de Insulina/fisiología , Proteínas/metabolismo , Secretagoginas/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Supervivencia Celular , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Secretagoginas/deficiencia , Análisis de la Célula Individual
6.
Proc Natl Acad Sci U S A ; 114(10): E2006-E2015, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223495

RESUMEN

The rostral migratory stream (RMS) is viewed as a glia-enriched conduit of forward-migrating neuroblasts in which chemorepulsive signals control the pace of forward migration. Here we demonstrate the existence of a scaffold of neurons that receive synaptic inputs within the rat, mouse, and human fetal RMS equivalents. These neurons express secretagogin, a Ca2+-sensor protein, to execute an annexin V-dependent externalization of matrix metalloprotease-2 (MMP-2) for reconfiguring the extracellular matrix locally. Mouse genetics combined with pharmacological probing in vivo and in vitro demonstrate that MMP-2 externalization occurs on demand and that its loss slows neuroblast migration. Loss of function is particularly remarkable upon injury to the olfactory bulb. Cumulatively, we identify a signaling cascade that provokes structural remodeling of the RMS through recruitment of MMP-2 by a previously unrecognized neuronal constituent. Given the life-long presence of secretagogin-containing neurons in human, this mechanism might be exploited for therapeutic benefit in rescue strategies.


Asunto(s)
Calcio/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Secretagoginas/genética , Animales , Anexina A5/genética , Anexina A5/metabolismo , Movimiento Celular , Feto , Regulación de la Expresión Génica , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Microtomía , Neuroglía/ultraestructura , Neuronas/ultraestructura , Bulbo Olfatorio/citología , Cultivo Primario de Células , Ratas , Ratas Wistar , Secretagoginas/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Técnicas de Cultivo de Tejidos
7.
Proc Natl Acad Sci U S A ; 112(45): E6185-94, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26494286

RESUMEN

Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of ß cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/ß cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.


Asunto(s)
Endocannabinoides/metabolismo , Islotes Pancreáticos/embriología , Morfogénesis/fisiología , Receptor Cannabinoide CB1/metabolismo , Canales Catiónicos TRPV/metabolismo , Análisis de Varianza , Animales , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Feto/metabolismo , Prueba de Tolerancia a la Glucosa , Procesamiento de Imagen Asistido por Computador , Islotes Pancreáticos/anatomía & histología , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Embarazo
8.
J Biol Chem ; 288(45): 32685-32699, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24089517

RESUMEN

Endocannabinoid signaling has been implicated in modulating insulin release from ß cells of the endocrine pancreas. ß Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes.


Asunto(s)
Exocitosis , Quinasa 1 de Adhesión Focal/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptor Cannabinoide CB1/metabolismo , Vesículas Secretoras/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Línea Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Endocannabinoides/genética , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Quinasa 1 de Adhesión Focal/genética , Glicéridos/farmacología , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Insulina/genética , Secreción de Insulina , Ratones , Ratones Noqueados , Alcamidas Poliinsaturadas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/genética , Vesículas Secretoras/genética
9.
Sci Rep ; 3: 2093, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23806960

RESUMEN

Endocannabinoids are small signaling lipids, with 2-arachidonoylglycerol (2-AG) implicated in modulating axonal growth and synaptic plasticity. The concept of short-range extracellular signaling by endocannabinoids is supported by the lack of trans-synaptic 2-AG signaling in mice lacking sn-1-diacylglycerol lipases (DAGLs), synthesizing 2-AG. Nevertheless, how far endocannabinoids can spread extracellularly to evoke physiological responses at CB1 cannabinoid receptors (CB1Rs) remains poorly understood. Here, we first show that cholinergic innervation of CA1 pyramidal cells of the hippocampus is sensitive to the genetic disruption of 2-AG signaling in DAGLα null mice. Next, we exploit a hybrid COS-7-cholinergic neuron co-culture system to demonstrate that heterologous DAGLα overexpression spherically excludes cholinergic growth cones from 2-AG-rich extracellular environments, and minimizes cell-cell contact in vitro. CB1R-mediated exclusion responses lasted 3 days, indicating sustained spherical 2-AG availability. Overall, these data suggest that extracellular 2-AG concentrations can be sufficient to activate CB1Rs along discrete spherical boundaries to modulate neuronal responsiveness.


Asunto(s)
Endocannabinoides/metabolismo , Lipoproteína Lipasa/metabolismo , Transducción de Señal , Animales , Ácidos Araquidónicos/metabolismo , Técnicas de Cocultivo , Glicéridos/metabolismo , Ratones , Ratones Endogámicos C57BL
10.
FEBS Lett ; 585(1): 255-60, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21146529

RESUMEN

The p53 tumor suppressor is recognized as a promising target for anti-cancer therapies. We previously reported that protoporphyrin IX (PpIX) disrupts the p53/murine double minute 2 (MDM2) complex and leads to p53 accumulation and activation of apoptosis in HCT 116 cells. Here we show the direct binding of PpIX to the N-terminal domain of p53. Furthermore, we addressed the induction of apoptosis in HCT 116 p53-null cells by PpIX and revealed interactions between PpIX and p73. We propose that PpIX disrupts the p53/MDM2 or MDMX and p73/MDM2 complexes and thereby activates the p53- or p73-dependent cancer cell death.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Protoporfirinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Sitios de Unión/genética , Proteínas de Ciclo Celular , Proteínas de Unión al ADN/genética , Electroforesis en Gel de Poliacrilamida , Polarización de Fluorescencia/métodos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Células HCT116 , Humanos , Mutación , Proteínas Nucleares/genética , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Protoporfirinas/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína Tumoral p73 , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética
11.
Postepy Hig Med Dosw (Online) ; 64: 78-86, 2010 Feb 24.
Artículo en Polaco | MEDLINE | ID: mdl-20231765

RESUMEN

p73 protein belongs, together with p63, to the p53 family. It is a relatively poorly studied structural and functional homolog of the well-described tumor suppressor protein p53, also known as the guardian of the genome. p73 protein, like p53, becomes activated by, for example, DNA damaging agents and it targets the same promoter sequences as p53. Both proteins participate in pathways of signal transduction whose activation leads to apoptosis induction or cell-cycle arrest. Studies concerning anticancer treatment focusing on the activation of p53 have been carried out extensively for about 10 years. It appears that a similar therapeutic strategy can be successfully applied in p73 activation as well. Unlike the TP53 gene, the gene encoding p73 protein is rarely mutated in tumors although the protein is found to be inactive. This can become very useful when designing molecules which will selectively activate p73 and consequently induce cancer-cell death. The aim of the present study was to describe in detail the structure, function, as well as cellular regulation of p73 in light of its therapeutic potential.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias/terapia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Proteínas Nucleares/fisiología , Proteína Tumoral p73 , Proteínas Supresoras de Tumor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...