Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 29(3): 471-482, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943004

RESUMEN

Frataxin deficiency, responsible for Friedreich's ataxia (FRDA), is crucial for cell survival since it critically affects viability of neurons, pancreatic beta cells and cardiomyocytes. In FRDA, the heart is frequently affected with typical manifestation of hypertrophic cardiomyopathy, which can progress to heart failure and cause premature death. A microarray analysis performed on FRDA patient's lymphoblastoid cells stably reconstituted with frataxin, indicated HS-1-associated protein X-1 (HAX-1) as the most significantly upregulated transcript (FC = +2, P < 0.0006). quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot analysis performed on (I) HEK293 stably transfected with empty vector compared to wild-type frataxin and (II) lymphoblasts from FRDA patients show that low frataxin mRNA and protein expression correspond to reduced levels of HAX-1. Frataxin overexpression and silencing were also performed in the AC16 human cardiomyocyte cell line. HAX-1 protein levels are indeed regulated through frataxin modulation. Moreover, correlation between frataxin and HAX-1 was further evaluated in peripheral blood mononuclear cells (PBMCs) from FRDA patients and from non-related healthy controls. A regression model for frataxin which included HAX-1, group membership and group* HAX-1 interaction revealed that frataxin and HAX-1 are associated both at mRNA and protein levels. Additionally, a linked expression of FXN, HAX-1 and antioxidant defence proteins MnSOD and Nrf2 was observed both in PBMCs and AC16 cardiomyocytes. Our results suggest that HAX-1 could be considered as a potential biomarker of cardiac disease in FRDA and the evaluation of its expression might provide insights into its pathogenesis as well as improving risk stratification strategies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomiopatía Hipertrófica/patología , Ataxia de Friedreich/complicaciones , Regulación de la Expresión Génica , Insuficiencia Cardíaca/patología , Proteínas de Unión a Hierro/metabolismo , Miocitos Cardíacos/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Cardiomiopatía Hipertrófica/etiología , Cardiomiopatía Hipertrófica/metabolismo , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Adulto Joven , Frataxina
2.
PLoS One ; 14(5): e0216363, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31059534

RESUMEN

Coronary artery disease (CAD) and acute myocardial infarction (AMI) are the leading causes of death worldwide. Since only a subset of CAD patients develops myocardial infarction, it is likely that unique factors predispose to AMI. Circulating microRNAs represent diagnostic powerful biomarkers for detection of heart injuries and patients' risk stratification. Using an array-based approach, the expression of 84 circulating miRNAs was analyzed in plasma of pooled stable CAD patients (CAD; n = 5) and unstable CAD patients (AMI_T0; n = 5) enrolled within 24 hours from an AMI event. The array experiments showed 27 miRNAs differentially expressed with a two-fold up- or down-regulation (10 up- and 17 down-regulated miRNAs). Among them, miR-423-5p dis-regulation was confirmed in a larger case study (n = 99). Circulating miR-423-5p resulted to be significantly down-regulated within 24 hours from the AMI event (FC = -2, p≤0.05). Interestingly, miR-423-5p expression resulted to be increased (FC = +2; p≤0.005) in a subgroup of the same AMI patients (AMI_T1; n = 11) analyzed after 6 months from the acute event. We extended miR-423-5p expression study on PBMCs (peripheral blood mononuclear cells), confirming also in this tissue its up-regulation at 6 months post-AMI. Receiver operating characteristic analyses (ROC) were performed to detect the power of miR-423-5p to discriminate stable and unstable CAD. In plasma, miR-423-5p expression accurately distinguishes stable and unstable CAD patients (AUC = 0.7143, p≤0.005). Interestingly, the highest discriminatory value (AUC = 0.8529 p≤0.0005) was identified in blood cells, where miR-423-5p expression is able to differentiate unstable CAD patients during an acute event (AMI_T0) from those at six months post-AMI (AMI_T1). Furthermore, cellular miR-423-5p may discriminate also stable CAD patients from unstable CAD patients after six months post-AMI (AUC = 0.7355 p≤0.05). The results of this pilot-study suggest that miR-423-5p expression level both in plasma and blood cells, could represent a new promising biomarker for risk stratification of CAD patients.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico , MicroARNs/sangre , Enfermedad de la Arteria Coronaria/sangre , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/sangre , Proyectos Piloto , Curva ROC , Medición de Riesgo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...