Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(1): pgae006, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269070

RESUMEN

A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.

2.
Mol Cell ; 79(3): 390-405.e7, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32619402

RESUMEN

Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.


Asunto(s)
Moléculas de Adhesión Celular/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/química , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Clonación Molecular , Cristalografía por Rayos X , Expresión Génica , Humanos , Ratones , Modelos Moleculares , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/antagonistas & inhibidores , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Receptores de la Familia Eph/química , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Spodoptera , Homología Estructural de Proteína , Especificidad por Sustrato
3.
Structure ; 26(2): 270-281.e4, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29358026

RESUMEN

In the active HER receptor dimers, kinases play distinct roles; one is the catalytically active kinase and the other is its allosteric activator. This specialization enables signaling by the catalytically inactive HER3, which functions exclusively as an allosteric activator upon heterodimerization with other HER receptors. It is unclear whether the allosteric activation mechanism evolved before HER receptors functionally specialized. We determined the crystal structure of the kinase domain of the only EGF receptor in Caenorhabditis elegans, LET-23. Our structure of a non-human EGFR kinase reveals autoinhibitory features conserved in the human counterpart. Strikingly, mutations within the putative allosteric dimer interface abrogate activity of the isolated LET-23 kinase and of the full-length receptor despite these regions being only partially conserved with human EGFR. Our results indicate that ancestral EGFRs have built-in features that poise them for allosteric activation that could facilitate emergence of the catalytically dead, yet functional, orthologs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Receptores ErbB/metabolismo , Fosfotransferasas/metabolismo , Transducción de Señal/fisiología , Animales , Caenorhabditis elegans , Dimerización , Fosforilación
4.
Sci Adv ; 3(9): e1700532, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28879236

RESUMEN

The phospholipid cardiolipin mediates the functional interactions of proteins that reside within energy-conserving biological membranes. However, the molecular basis by which this lipid performs this essential cellular role is not well understood. We address this role of cardiolipin using the multisubunit mitochondrial TIM23 protein transport complex as a model system. The early stages of protein import by this complex require specific interactions between the polypeptide substrate receptor, Tim50, and the membrane-bound channel-forming subunit, Tim23. Using analyses performed in vivo, in isolated mitochondria, and in reductionist nanoscale model membrane systems, we show that the soluble receptor domain of Tim50 interacts with membranes and with specific sites on the Tim23 channel in a manner that is directly modulated by cardiolipin. To obtain structural insights into the nature of these interactions, we obtained the first small-angle x-ray scattering-based structure of the soluble Tim50 receptor in its entirety. Using these structural insights, molecular dynamics simulations combined with a range of biophysical measurements confirmed the role of cardiolipin in driving the association of the Tim50 receptor with lipid bilayers with concomitant structural changes, highlighting the role of key structural elements in mediating this interaction. Together, these results show that cardiolipin is required to mediate specific receptor-channel associations in the TIM23 complex. Our results support a new working model for the dynamic structural changes that occur within the complex during transport. More broadly, this work strongly advances our understanding of how cardiolipin mediates interactions among membrane-associated proteins.


Asunto(s)
Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transporte Biológico , Cardiolipinas/química , Membrana Celular/química , Expresión Génica , Membrana Dobles de Lípidos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteolisis , Proteínas Recombinantes , Relación Estructura-Actividad
5.
Methods Mol Biol ; 1567: 155-178, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28276018

RESUMEN

The isolation and characterization of mitochondrial membrane proteins is technically challenging because they natively reside within the specialized environment of the lipid bilayer, an environment that must be recapitulated to some degree during reconstitution to ensure proper folding, stability, and function. Here we describe protocols for the assembly of a membrane protein into lipid bilayer nanodiscs in a series of cell-free reactions. Cell-free expression of membrane proteins circumvents problems attendant with in vivo expression such as cytotoxicity, low expression levels, and the formation of inclusion bodies. Nanodiscs are artificial membrane systems comprised of discoidal lipid bilayer particles bound by annuli of amphipathic scaffold protein that shield lipid acyl chains from water. They are therefore excellent platforms for membrane protein reconstitution and downstream solution-based biochemical and biophysical analysis. This chapter details the procedures for the reconstitution of a mitochondrial membrane protein into nanodiscs using two different types of approaches: cotranslational and posttranslational assembly. These strategies are broadly applicable for different mitochondrial membrane proteins. They are also applicable for the use of nanodiscs with distinct lipid compositions that are biomimetic for different mitochondrial membranes and that recapitulate lipid profiles associated with pathological disorders in lipid metabolism.


Asunto(s)
Sistema Libre de Células , Técnicas In Vitro , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Nanoestructuras , Biosíntesis de Proteínas , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Unión Proteica , Triticum , Flujo de Trabajo
6.
Biotechnol Genet Eng Rev ; 30(1-2): 79-93, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25023464

RESUMEN

Within the last decade, nanoscale lipid bilayers have emerged as powerful experimental systems in the analysis of membrane proteins (MPs) for both basic and applied research. These discoidal lipid lamellae are stabilized by annuli of specially engineered amphipathic polypeptides (nanodiscs) or polymers (SMALPs/Lipodisqs®). As biomembrane mimetics, they are well suited for the reconstitution of MPs within a controlled lipid environment. Moreover, because they are water-soluble, they are amenable to solution-based biochemical and biophysical experimentation. Hence, due to their solubility, size, stability, and monodispersity, nanoscale lipid bilayers offer technical advantages over more traditional MP analytic approaches such as detergent solubilization and reconstitution into lipid vesicles. In this article, we review some of the most recent advances in the synthesis of polypeptide- and polymer-bound nanoscale lipid bilayers and their application in the study of MP structure and function.


Asunto(s)
Membrana Dobles de Lípidos/química , Fluidez de la Membrana , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Fosfolípidos/química , Conformación Proteica , Relación Estructura-Actividad
7.
Nat Struct Mol Biol ; 20(8): 965-72, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23832274

RESUMEN

Tim23, the central subunit of the TIM23 protein-translocation complex, forms a voltage-gated channel in the mitochondrial inner membrane (MIM), an energy-conserving membrane that generates a proton-motive force to drive vital processes. Using high-resolution fluorescence mapping of a channel-facing transmembrane segment (TMS2) of Tim23 from Saccharomyces cerevisiae, we demonstrate that changes in the energized state of the MIM cause marked structural alterations in the channel region. In an energized membrane, TMS2 forms a continuous α-helix that is inaccessible to the aqueous intermembrane space (IMS). Upon depolarization, the helical periodicity of TMS2 is disrupted, and the channel becomes exposed to the IMS. Kinetic measurements confirm that changes in TMS2 conformation coincide with depolarization. These results reveal how the energized state of the membrane drives functionally relevant structural dynamics in membrane proteins coupled to processes such as channel gating.


Asunto(s)
Proteínas de Transporte de Membrana/química , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Fuerza Protón-Motriz/fisiología , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Clonación Molecular , Cinética , Proteínas de Transporte de Membrana/metabolismo , Microscopía Fluorescente , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
8.
BMC Biotechnol ; 13: 41, 2013 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-23663692

RESUMEN

BACKGROUND: The reconstitution of membrane proteins and complexes into nanoscale lipid bilayer structures has contributed significantly to biochemical and biophysical analyses. Current methods for performing such reconstitutions entail an initial detergent-mediated step to solubilize and isolate membrane proteins. Exposure to detergents, however, can destabilize many membrane proteins and result in a loss of function. Amphipathic copolymers have recently been used to stabilize membrane proteins and complexes following suitable detergent extraction. However, the ability of these copolymers to extract proteins directly from native lipid bilayers for subsequent reconstitution and characterization has not been explored. RESULTS: The styrene-maleic acid (SMA) copolymer effectively solubilized membranes of isolated mitochondria and extracted protein complexes. Membrane complexes were reconstituted into polymer-bound nanoscale discs along with endogenous lipids. Using respiratory Complex IV as a model, these particles were shown to maintain the enzymatic activity of multicomponent electron transporting complexes. CONCLUSIONS: We report a novel process for reconstituting fully operational protein complexes directly from cellular membranes into nanoscale lipid bilayers using the SMA copolymer. This facile, single-step strategy obviates the requirement for detergents and yields membrane complexes suitable for structural and functional studies.


Asunto(s)
Biotecnología/métodos , Proteínas de la Membrana/aislamiento & purificación , Membranas Mitocondriales/enzimología , Complejos Multienzimáticos/aislamiento & purificación , Nanopartículas/química , Maleatos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Nanopartículas/metabolismo , Poliestirenos/química , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Biol Chem ; 286(22): 19652-61, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21474448

RESUMEN

Nine of ten methylated nucleotides of Escherichia coli 16 S rRNA are conserved in Mycobacterium tuberculosis. All the 10 different methyltransferases are known in E. coli, whereas only TlyA and GidB have been identified in mycobacteria. Here we have identified Rv2966c of M. tuberculosis as an ortholog of RsmD protein of E. coli. We have shown that rv2966c can complement rsmD-deleted E. coli cells. Recombinant Rv2966c can use 30 S ribosomes purified from rsmD-deleted E. coli as substrate and methylate G966 of 16 S rRNA in vitro. Structure determination of the protein shows the protein to be a two-domain structure with a short hairpin domain at the N terminus and a C-terminal domain with the S-adenosylmethionine-MT-fold. We show that the N-terminal hairpin is a minimalist functional domain that helps Rv2966c in target recognition. Deletion of the N-terminal domain prevents binding to nucleic acid substrates, and the truncated protein fails to carry out the m(2)G966 methylation on 16 S rRNA. The N-terminal domain also binds DNA efficiently, a property that may be utilized under specific conditions of cellular growth.


Asunto(s)
Proteínas Bacterianas/química , Histonas/química , Mycobacterium tuberculosis/enzimología , ARNt Metiltransferasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Histonas/genética , Histonas/metabolismo , Metilación , Mycobacterium tuberculosis/genética , Estructura Terciaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Relación Estructura-Actividad , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
10.
Am J Vet Res ; 70(8): 1026-30, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19645585

RESUMEN

OBJECTIVE: To evaluate the mechanical properties of canine carpal ligaments for use in a finite element model of the canine antebrachium. SAMPLE POPULATION: 26 forelimbs obtained from cadavers of 13 dogs euthanized for reasons unrelated to this study. PROCEDURES: 6 ligaments (medial collateral, lateral collateral, palmar ulnocarpal, palmar radiocarpal, accessorometacarpal-V, and accessorometacarpal-IV) were evaluated. Quasistatic tensile tests were performed on all specimens (n = 8 specimens/ligament) by use of a servohydraulic materials testing system in conjunction with a 6-df load cell. Each specimen was preconditioned for 10 cycles by applying 2% strain by use of a Haversine waveform. Tension was subsequently applied to each specimen at a strain rate of 0.5%/s until ligament failure. RESULTS: Significant differences in modulus of elasticity were detected among the ligaments. Elastic modulus did not differ significantly between the 2 accessorometacapal ligaments, between the 2 collateral ligaments, or between the 2 palmar carpal ligaments. Ligaments were classified into 3 groups (accessorometacarpal ligaments, intra-articular ligaments, and palmar carpal ligaments), and significant differences were detected among the 3 ligament groups. The accessorometacarpal ligaments had a relatively high elastic modulus, compared with results for the other ligaments. The medial and lateral collateral ligaments had the lowest elastic modulus of any of the ligaments tested. CONCLUSIONS AND CLINICAL RELEVANCE: These results indicated a strong function-elastic modulus relationship for the 6 ligaments tested. The mechanical properties described here will be of use in creating a finite element model of the canine antebrachium.


Asunto(s)
Articulaciones del Carpo/fisiología , Perros/fisiología , Ligamentos Articulares/fisiología , Modelos Anatómicos , Análisis de Varianza , Animales , Fenómenos Biomecánicos , Articulaciones del Carpo/anatomía & histología , Perros/anatomía & histología , Elasticidad , Ligamentos Articulares/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...