Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Neurosci ; 33(5): 531-554, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34983132

RESUMEN

The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Humanos , Neovascularización Patológica , Plasticidad Neuronal , Estudios Prospectivos , Reproducibilidad de los Resultados
2.
Biomedicines ; 9(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34572278

RESUMEN

Early life stress (ELS) causes long-lasting changes in brain plasticity induced by the exposure to stress factors acting prenatally or in the early postnatal ontogenesis due to hyperactivation of hypothalamic-pituitary-adrenal axis and sympathetic nervous system, development of neuroinflammation, aberrant neurogenesis and angiogenesis, and significant alterations in brain metabolism that lead to neurological deficits and higher susceptibility to development of brain disorders later in the life. As a key component of complex pathogenesis, ELS-mediated changes in brain metabolism associate with development of mitochondrial dysfunction, loss of appropriate mitochondria quality control and mitochondrial dynamics, deregulation of metabolic reprogramming. These mechanisms are particularly critical for maintaining the pool and development of brain cells within neurogenic and angiogenic niches. In this review, we focus on brain mitochondria and energy metabolism related to tightly coupled neurogenic and angiogenic events in healthy and ELS-affected brain, and new opportunities to develop efficient therapeutic strategies aimed to restore brain metabolism and reduce ELS-induced impairments of brain plasticity.

3.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925080

RESUMEN

Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood-brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer's disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer's disease.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Mitocondrias/fisiología , Modelos Neurológicos , Degeneración Nerviosa/etiología , Degeneración Nerviosa/fisiopatología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/fisiopatología , Animales , Daño del ADN , ADN Mitocondrial/metabolismo , Humanos , Técnicas In Vitro , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/fisiología , Especies Reactivas de Oxígeno/metabolismo
4.
Rev Neurosci ; 32(2): 131-142, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33550784

RESUMEN

Early life stress (ELS) is one of the most critical factors that could modify brain plasticity, memory and learning abilities, behavioral reactions, and emotional response in adulthood leading to development of different mental disorders. Prenatal and early postnatal periods appear to be the most sensitive periods of brain development in mammals, thereby action of various factors at these stages of brain development might result in neurodegeneration, memory impairment, and mood disorders at later periods of life. Deciphering the processes underlying aberrant neurogenesis, synaptogenesis, and cerebral angiogenesis as well as deeper understanding the effects of ELS on brain development will provide novel approaches to prevent or to cure psychiatric and neurological deficits caused by stressful conditions at the earliest stages of ontogenesis. Neuropeptide oxytocin serves as an amnesic, anti-stress, pro-angiogenic, and neurogenesis-controlling molecule contributing to dramatic changes in brain plasticity in ELS. In the current review, we summarize recent data on molecular mechanisms of ELS-driven changes in brain plasticity with the particular focus on oxytocin-mediated effects on neurogenesis and angiogenesis, memory establishment, and forgetting.


Asunto(s)
Experiencias Adversas de la Infancia , Adulto , Animales , Emociones , Femenino , Humanos , Neurogénesis , Plasticidad Neuronal , Embarazo , Estrés Psicológico
5.
Front Immunol ; 11: 585294, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304350

RESUMEN

Ectoenzyme and receptor BST-1/CD157 has been considered as a key molecule involved in the regulation of functional activity of cells in various tissues and organs. It is commonly accepted that CD157 catalyzes NAD+ hydrolysis and acts as a component of integrin adhesion receptor complex. Such properties are important for the regulatory role of CD157 in neuronal and glial cells: in addition to recently discovered role in the regulation of emotions, motor functions, and social behavior, CD157 might serve as an important component of innate immune reactions in the central nervous system. Activation of innate immune system in the brain occurs in response to infectious agents as well as in brain injury and neurodegeneration. As an example, in microglial cells, association of CD157 with CD11b/CD18 complex drives reactive gliosis and neuroinflammation evident in brain ischemia, chronic neurodegeneration, and aging. There are various non-substrate ligands of CD157 belonging to the family of extracellular matrix proteins (fibronectin, collagen I, finbrinogen, and laminin) whose activity is required for controlling cell adhesion and migration. Therefore, CD157 could control structural and functional integrity of the blood-brain barrier and barriergenesis. On the other hand, contribution of CD157 to the regulation of brain development is rather possible since in the embryonic brain, CD157 expression is very high, whereas in the adult brain, CD157 is expressed on neural stem cells and, presumably, is involved in the neurogenesis. Besides, CD157 could mediate astrocytes' action on neural stem and progenitor cells within neurogenic niches. In this review we will summarize how CD157 may affect brain plasticity acting as a molecule at the crossroad of neurogenesis, cerebral angiogenesis, and immune regulation.


Asunto(s)
ADP-Ribosil Ciclasa/inmunología , Antígenos CD/inmunología , Encéfalo/inmunología , Encéfalo/fisiopatología , Plasticidad Neuronal/inmunología , Animales , Proteínas Ligadas a GPI/inmunología , Humanos
6.
Respir Physiol Neurobiol ; 278: 103442, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32305676

RESUMEN

The mechanisms and signalling pathways of the neuroprotective effect of hypercapnia and its combination with hypoxia are poorly understood. The study aims to test the hypothesis about the potentiating effect of hypercapnia on hypoxia adaptation systems directly related to hypoxia-induced factor 1α (HIF-1α). In this study we assessed HIF-1α content in hippocampal extracts and astrocytes obtained from Wistar male rats exposed to different respiratory conditions (7- or 15-fold of hypoxia and/or hypercapnia). In addition, HIF-1α content in astrocytes was assessed in in vitro model of chemical hypoxia as well as in the cerebral cortex after photothrombotic damage of this brain region. This study indicates increased levels of HIF1α in hippocampal extracts, astrocytes, and in cells of the near-stroke region of the cerebral cortex in rats exposed to hypoxia and hypercapnic hypoxia, but not hypercapnia alone. In in vitro study, hypercapnia facilitates the effects of acute chemical hypoxia observed in astrocytes. Thus, hypercapnia does not increase the level of transcription factor HIF-1α. However, the combined effects of hypercapnia and hypoxia in in vitro simulations of acute chemical hypoxia potentiate the accumulation of HIF-1α.


Asunto(s)
Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Hipercapnia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Técnicas In Vitro , Neuroprotección , Ratas , Transducción de Señal
7.
Rev Neurosci ; 30(8): 807-820, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31152644

RESUMEN

The excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis. Recent findings suggest that neural stem and progenitor cells appear to be the target for the action of GABA within the neurogenic or oligovascular niches. The same might be true for the role of neuropeptides (i.e. oxytocin) in neurogenic niches. This review covers current understanding of the role of E/I balance in the regulation of neuroplasticity associated with social behavior in normal brain, and in neurodevelopmental and neurodegenerative diseases. Further studies are required to decipher the GABA-mediated regulation of postnatal neurogenesis and synaptic integration of newly-born neurons as a potential target for the treatment of brain diseases.


Asunto(s)
Enfermedades Neurodegenerativas/etiología , Trastornos del Neurodesarrollo/etiología , Neurogénesis , Potenciales Sinápticos , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/fisiología , Humanos , Enfermedades Neurodegenerativas/fisiopatología , Trastornos del Neurodesarrollo/fisiopatología
8.
Front Physiol ; 9: 1656, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534080

RESUMEN

Adipose tissue is recognized as an important organ with metabolic, regulatory, and plastic roles. Adipose tissue-derived stem cells (ASCs) with self-renewal properties localize in the stromal vascular fraction (SVF) being present in a vascular niche, thereby, contributing to local regulation of angiogenesis and vessel remodeling. In the past decades, ASCs have attracted much attention from biologists and bioengineers, particularly, because of their multilineage differentiation potential, strong proliferation, and migration abilities in vitro and high resistance to oxidative stress and senescence. Current data suggest that the SVF serves as an important source of endothelial progenitors, endothelial cells, and pericytes, thereby, contributing to vessel remodeling and growth. In addition, ASCs demonstrate intriguing metabolic and interlineage plasticity, which makes them good candidates for creating regenerative therapeutic protocols, in vitro tissue models and microphysiological systems, and tissue-on-chip devices for diagnostic and regeneration-supporting purposes. This review covers recent achievements in understanding the metabolic activity within the SVF niches (lactate and NAD+ metabolism), which is critical for maintaining the pool of ASCs, and discloses their pro-angiogenic potential, particularly, in the complex therapy of cardiovascular and cerebrovascular diseases.

9.
Rev Neurosci ; 29(5): 567-591, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29306934

RESUMEN

The contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Pericitos/citología , Permeabilidad , Animales , Astrocitos/metabolismo , Humanos
10.
Artículo en Inglés | MEDLINE | ID: mdl-28676848

RESUMEN

Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a "platform" for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections.


Asunto(s)
Infecciones del Sistema Nervioso Central/inmunología , Sistema Nervioso Central/irrigación sanguínea , Sistema Nervioso Central/inmunología , Inflamación/inmunología , Enfermedades Neurodegenerativas/etiología , Animales , Barrera Hematoencefálica/inmunología , Encéfalo/inmunología , Movimiento Celular , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/microbiología , Infecciones del Sistema Nervioso Central/sangre , Infecciones del Sistema Nervioso Central/complicaciones , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/fisiopatología , Enfermedades del Sistema Nervioso/inmunología , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/fisiopatología , Especies Reactivas de Oxígeno , Virosis/complicaciones
11.
Front Physiol ; 7: 599, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27990124

RESUMEN

Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

12.
Rev Neurosci ; 26(2): 143-59, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25528762

RESUMEN

Neuroinflammation is as an important component of pathogenesis in many types of brain pathology. Immune mechanisms regulate neuroplasticity, memory formation, neurogenesis, behavior, brain development, cognitive functions, and brain metabolism. It is generally believed that essential homeostatic functions of astrocytes - astroglia-neuron metabolic coupling, gliovascular control, regulation of proliferation, and migration of cells in the neurogenic niches - are compromised in neuroinflammation resulting in excitotoxicity, neuronal and glial cell death, and alterations of intercellular communication. Viral neuroinfection, release of non-coding RNAs from the cells at the sites of brain injury or degeneration, and application of siRNA or RNA aptamers as therapeutic agents would require dsRNA-sensing pathways in the cells of neuronal and non-neuronal origin. In this review, we analyze the data regarding the role of astrocytes in dsRNA-initiated innate immune response in neuroinflammation and their contribution to progression of neurodegenerative and neurodevelopmental pathology.


Asunto(s)
Astrocitos/metabolismo , ADN/genética , Enfermedades Neurodegenerativas/metabolismo , Transducción de Señal , Receptor Toll-Like 3/metabolismo , Animales , Astrocitos/citología , Humanos , Enfermedades Neurodegenerativas/genética , Neurogénesis , Receptor Toll-Like 3/genética
13.
Neurosci Biobehav Rev ; 38: 160-72, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24300694

RESUMEN

The aetiology of autism spectrum disorders remains unclear although a growing number of associated genetic abnormalities and environmental factors have been discovered in recent decades. These advancements coincided with a remarkable increase in the comprehension of physiological functions and pathological potential of neuroglia in the central nervous system that led to a notion of fundamental contribution of glial cells into multiple neuropathologies, including neuropsychiatric and developmental disorders. Growing evidence indicates a role for deregulation of astroglial control over homeostasis and plastic potential of neural networks as well as microglial malfunction and neuroinflammatory response in the brains of autistic patients. In this review, we shall summarize the status and pathological potential of neuroglia and argue for neuroglial roots of autistic disorders.


Asunto(s)
Encéfalo/fisiopatología , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Neuroglía/fisiología , Animales , Trastornos Generalizados del Desarrollo Infantil/genética , Humanos
14.
J Alzheimers Dis ; 22(1): 17-36, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20847414

RESUMEN

Current theories state that Alzheimer's disease (AD) is a vascular disorder that initiates its pathology through cerebral microvascular abnormalities. Endothelial dysfunction caused by the injury or death of endothelial cells contributes to progression of AD. Also, functional relationships between neurons, glial cells, and vascular cells within so-called neurovascular unit are dramatically compromised in AD. Several recent studies have highlighted that endothelial cells might be the target for the toxic action of heavily aggregated proteins, glia-derived cytokines, and stimuli inducing oxidative and metabolic stress in AD brains. Here, we describe the properties of the brain endothelium that contribute to its specific functions in the central nervous system, and how endothelial-neuronal-glial cell interactions are compromised in the pathogenesis of AD. We also discuss the ways in which functioning of endothelial cells can be modulated in cerebral microvessels. Understanding of molecular mechanisms of endothelial injury and repair in AD would give us novel diagnostic biomarkers and pharmacological targets.


Asunto(s)
Enfermedad de Alzheimer/patología , Endotelio Vascular/patología , Degeneración Nerviosa/patología , Neuroglía/patología , Neuronas/patología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Animales , Endotelio Vascular/química , Endotelio Vascular/metabolismo , Humanos , Degeneración Nerviosa/clasificación , Degeneración Nerviosa/metabolismo , Neuroglía/química , Neuroglía/metabolismo , Neuronas/química , Neuronas/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...