Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 12155, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108512

RESUMEN

Drastic sensitivity enhancement of dynamic nuclear polarization is becoming an increasingly critical methodology to monitor real-time metabolic and physiological information in chemistry, biochemistry, and biomedicine. However, the limited number of available hyperpolarized 13C probes, which can effectively interrogate crucial metabolic activities, remains one of the major bottlenecks in this growing field. Here, we demonstrate [1-13C] N-acetyl cysteine (NAC) as a novel probe for hyperpolarized 13C MRI to monitor glutathione redox chemistry, which plays a central part of metabolic chemistry and strongly influences various therapies. NAC forms a disulfide bond in the presence of reduced glutathione, which generates a spectroscopically detectable product that is separated from the main peak by a 1.5 ppm shift. In vivo hyperpolarized MRI in mice revealed that NAC was broadly distributed throughout the body including the brain. Its biochemical transformation in two human pancreatic tumor cells in vitro and as xenografts differed depending on the individual cellular biochemical profile and microenvironment in vivo. Hyperpolarized NAC can be a promising non-invasive biomarker to monitor in vivo redox status and can be potentially translatable to clinical diagnosis.


Asunto(s)
Acetilcisteína/metabolismo , Encéfalo/metabolismo , Isótopos de Carbono/análisis , Glutatión/metabolismo , Neoplasias Pancreáticas/patología , Animales , Apoptosis , Proliferación Celular , Humanos , Imagen por Resonancia Magnética , Ratones , Oxidación-Reducción , Neoplasias Pancreáticas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Sci Rep ; 10(1): 15413, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963286

RESUMEN

Pancreatic ß-cells become irreversibly damaged by long-term exposure to excessive glucose concentrations and lose their ability to carry out glucose stimulated insulin secretion (GSIS) upon damage. The ß-cells are not able to control glucose uptake and they are therefore left vulnerable for endogenous toxicity from metabolites produced in excess amounts upon increased glucose availability. In order to handle excess fuel, the ß-cells possess specific metabolic pathways, but little is known about these pathways. We present a study of ß-cell metabolism under increased fuel pressure using a stable isotope resolved NMR approach to investigate early metabolic events leading up to ß-cell dysfunction. The approach is based on a recently described combination of 13C metabolomics combined with signal enhanced NMR via dissolution dynamic nuclear polarization (dDNP). Glucose-responsive INS-1 ß-cells were incubated with increasing concentrations of [U-13C] glucose under conditions where GSIS was not affected (2-8 h). We find that pyruvate and DHAP were the metabolites that responded most strongly to increasing fuel pressure. The two major divergence pathways for fuel excess, the glycerolipid/fatty acid metabolism and the polyol pathway, were found not only to operate at unchanged rate but also with similar quantity.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Animales , Línea Celular , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Redes y Vías Metabólicas/fisiología , Metabolómica/métodos , Presión , Ácido Pirúvico/metabolismo , Ratas , Transducción de Señal/fisiología
3.
Anal Chem ; 90(1): 674-678, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29200272

RESUMEN

Metabolite profiles and their isotopomer distributions can be studied noninvasively in complex mixtures with NMR. The advent of dissolution Dynamic Nuclear Polarization (dDNP) and isotope enrichment add sensitivity and resolution to such metabolic studies. Metabolic pathways and networks can be mapped and quantified if protocols that control and exploit the ex situ signal enhancement are created. We present a sample preparation method, including cell incubation, extraction and signal enhancement, to obtain reproducible and quantitative dDNP (qdDNP) NMR-based stable isotope-resolved analysis. We further illustrate how qdDNP was applied to gain metabolic insights into the phenotype of aggressive cancer cells.

4.
J Magn Reson ; 272: 141-146, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27693965

RESUMEN

Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling the fluid path that allows it to be reused. The filling method has been investigated in terms of reproducibility at two extrema, high dose for patient use and low dose for rodent studies, using [1-13C]pyruvate as example. We demonstrate that the filling method allows high reproducibility of six quality control parameters with standard deviations 3-10 times smaller than the acceptance criteria intervals in clinical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA