Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803648

RESUMEN

Free fatty acids are essential structural components of the cell, and their intracellular distribution and effects on membrane organelles have crucial roles in regulating the metabolism, development, and cell cycle of most cell types. Here we engineered novel fluorescent, polarity-sensitive fatty acid derivatives, with the fatty acid aliphatic chain of increasing length (from 12 to 18 carbons). As in the laurdan probe, the lipophilic acyl tail is connected to the environmentally sensitive dimethylaminonaphthalene moiety. The fluorescence lifetime imaging analysis allowed us to monitor the intracellular distribution of the free fatty acids within the cell, and to simultaneously examine how the fluidity and the microviscosity of the membrane environment influence their localization. Each of these probes can thus be used to investigate the membrane fluidity regulation of the correspondent fatty acid intracellular distribution. We observed that, in PC-12 cells, fluorescent sensitive fatty acid derivatives with increased chain length compartmentalize more preferentially in the fluid regions, characterized by a low microviscosity. Moreover, fatty acid derivatives with the longest chain compartmentalize in lipid droplets and lysosomes with characteristic lifetimes, thus making these probes a promising tool for monitoring lipophagy and related events.


Asunto(s)
Ácidos Grasos/metabolismo , Colorantes Fluorescentes/metabolismo , Espacio Intracelular/metabolismo , Fluidez de la Membrana , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Animales , Fluorescencia , Lauratos/química , Lisosomas/metabolismo , Células PC12 , Ratas , Solventes , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA