Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 8(8): 1450-1467, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37337046

RESUMEN

Akkermansia muciniphila, a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities.


Asunto(s)
Intestinos , Mucinas , Verrucomicrobia , Animales , Ratones , Mucinas/metabolismo , Esteroles/biosíntesis , Verrucomicrobia/genética , Verrucomicrobia/crecimiento & desarrollo , Verrucomicrobia/metabolismo , Intestinos/microbiología , Organismos Libres de Patógenos Específicos , Elementos Transponibles de ADN/genética , Mutagénesis , Interacciones Microbiota-Huesped/genética , Espacio Intracelular/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transcripción Genética
2.
mBio ; 12(3)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006653

RESUMEN

The mucophilic anaerobic bacterium Akkermansia muciniphila is a prominent member of the gastrointestinal (GI) microbiota and the only known species of the Verrucomicrobia phylum in the mammalian gut. A high prevalence of A. muciniphila in adult humans is associated with leanness and a lower risk for the development of obesity and diabetes. Four distinct A. muciniphila phylogenetic groups have been described, but little is known about their relative abundance in humans or how they impact human metabolic health. In this study, we isolated and characterized 71 new A. muciniphila strains from a cohort of children and adolescents undergoing treatment for obesity. Based on genomic and phenotypic analysis of these strains, we found several phylogroup-specific phenotypes that may impact the colonization of the GI tract or modulate host functions, such as oxygen tolerance, adherence to epithelial cells, iron and sulfur metabolism, and bacterial aggregation. In antibiotic-treated mice, phylogroups AmIV and AmII outcompeted AmI strains. In children and adolescents, AmI strains were most prominent, but we observed high variance in A. muciniphila abundance and single phylogroup dominance, with phylogroup switching occurring in a small subset of patients. Overall, these results highlight that the ecological principles determining which A. muciniphila phylogroup predominates in humans are complex and that A. muciniphila strain genetic and phenotypic diversity may represent an important variable that should be taken into account when making inferences as to this microbe's impact on its host's health.IMPORTANCE The abundance of Akkermansia muciniphila in the gastrointestinal (GI) tract is linked to multiple positive health outcomes. There are four known A. muciniphila phylogroups, yet the prevalence of these phylogroups and how they vary in their ability to influence human health is largely unknown. In this study, we performed a genomic and phenotypic analysis of 71 A. muciniphila strains and identified phylogroup-specific traits such as oxygen tolerance, adherence, and sulfur acquisition that likely influence colonization of the GI tract and differentially impact metabolic and immunological health. In humans, we observed that single Akkermansia phylogroups predominate at a given time but that the phylotype can switch in an individual. This collection of strains provides the foundation for the functional characterization of A. muciniphila phylogroup-specific effects on the multitude of host outcomes associated with Akkermansia colonization, including protection from obesity, diabetes, colitis, and neurological diseases, as well as enhanced responses to cancer immunotherapies.


Asunto(s)
Variación Genética , Genotipo , Fenotipo , Akkermansia/clasificación , Akkermansia/genética , Akkermansia/aislamiento & purificación , Animales , Estudios de Cohortes , Femenino , Microbioma Gastrointestinal , Células HT29 , Humanos , Ratones , Ratones Endogámicos C57BL , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Chembiochem ; 19(12): 1319-1325, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29446199

RESUMEN

Cellular signal transduction is often regulated at multiple steps to achieve more complex logic or precise control of a pathway. For instance, some signaling mechanisms couple allosteric activation with localization to achieve high signal to noise. Here, we create a system for light-activated nuclear import that incorporates two levels of control. It consists of a nuclear import photoswitch, light-activated nuclear shuttle (LANS), and a protein engineered to preferentially interact with LANS in the dark, Zdk2. First, Zdk2 is tethered to a location in the cytoplasm that sequesters LANS in the dark. Second, LANS incorporates a nuclear localization signal (NLS) that is sterically blocked from binding to the nuclear import machinery in the dark. If activated with light, LANS both dissociates from its tethered location and exposes its NLS, which leads to nuclear accumulation. We demonstrate that this coupled system improves the dynamic range of LANS in mammalian cells, yeast, and Caenorhabditis elegans and provides tighter control of transcription factors that have been fused to LANS.


Asunto(s)
Optogenética/métodos , Ingeniería de Proteínas/métodos , Transporte Activo de Núcleo Celular , Animales , Caenorhabditis elegans , Células HEK293 , Células HeLa , Humanos , Luz , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Proteínas/genética , Proteínas/metabolismo
4.
Traffic ; 15(5): 531-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24479619

RESUMEN

Export of transmembrane proteins from the endoplasmic reticulum (ER) is driven by directed incorporation into coat protein complex II (COPII)-coated vesicles. The sorting of some cargo proteins into COPII vesicles was shown to be mediated by specific interactions between transmembrane and COPII-coat-forming proteins. But even though some signals for ER exit have been identified on the cytosolic domains of membrane proteins, the general signaling and sorting mechanisms of ER export are still poorly understood. To investigate the role of cargo protein oligomer formation in the export process, we have created a transmembrane fusion protein that - owing to its FK506-binding protein domains - can be oligomerized in isolated membranes by addition of a small-molecule dimerizer. Packaging of the fusion protein into COPII vesicles is strongly enhanced in the presence of the dimerizer, demonstrating that the oligomeric state is an ER export signal for this membrane protein. Surprisingly, the cytosolic tail is not required for this oligomerization-dependent effect on protein sorting. Thus, an alternative mechanism, such as membrane bending, must account for ER export of the fusion protein.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Citosol/metabolismo , Proteínas de la Fusión de la Membrana/metabolismo , Multimerización de Proteína/fisiología , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Unión Proteica/fisiología , Proteínas de Unión a Tacrolimus/metabolismo , Levaduras/metabolismo , Levaduras/fisiología
5.
Plasmid ; 70(3): 353-61, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24042048

RESUMEN

Plasmid loss rate measurements are standard in microbiology and key to understanding plasmid stabilization mechanisms. The conventional assays eliminate selection for plasmids at the beginning of the experiment and screen for the appearance of plasmid-free cells over long-term population growth. However, it has been long appreciated in plasmid biology that the growth rate differential between plasmid-free and plasmid-containing cells at some point overshadows the effect of primary loss events, such that the assays can greatly over-estimate inherent loss rates. The standard solutions to this problem are to either consider the very early phase of loss where the fraction of plasmid-free cells increases linearly, or to measure the growth rate difference either by following the population for longer time or by measuring growth rates separately. Here we mathematically show that in all these cases, seemingly small experimental errors in the growth rate estimates can overshadow the estimates of the loss rates. For many plasmids, loss rates may thus be much lower than previously thought, and for some plasmids, the estimated loss rate may have nothing to do with actual loss rates. We further modify two independent experimental methods to separate inherent losses from growth differences and apply them to the same plasmids. First we use a high-throughput microscopy-based approach to screen for plasmid-free cells at extremely short time scales--tens of minutes rather than tens of generations--and apply it to a par⁻ version of mini-R1. Second we modify a counterselection-based plasmid loss assay inspired by the Luria-Delbrück fluctuation test that completely separates losses from growth, and apply it to various R1 and pSC101 derivatives. Concordant results from the two assays suggest that plasmids are lost at a lower frequency than previously believed. In fact, for par⁻ mini-R1 the observed loss rate of about 10⁻³ per cell and generation seems to be so low as to be inconsistent with what we know about the R1 stabilization mechanisms, suggesting these well characterized plasmids may have some additional and so far unknown stabilization mechanisms, for example improving copy number control or partitioning at cell division.


Asunto(s)
Secuencia de Bases , Escherichia coli/genética , Modelos Genéticos , Plásmidos , Eliminación de Secuencia , Replicación del ADN , Datos de Secuencia Molecular , Replicón
6.
Mol Biol Cell ; 15(11): 5075-91, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15356264

RESUMEN

The Saccharomyces cerevisiae vacuolar H+-ATPase (V-ATPase) is a multisubunit complex composed of a peripheral membrane sector (V1) responsible for ATP hydrolysis and an integral membrane sector (V0) required for proton translocation. Biogenesis of V0 requires an endoplasmic reticulum (ER)-localized accessory factor, Vma21p. We found that in vma21Delta cells, the major proteolipid subunit of V0 failed to interact with the 100-kDa V0 subunit, Vph1p, indicating that Vma21p is necessary for V0 assembly. Immunoprecipitation of Vma21p from wild-type membranes resulted in coimmunoprecipitation of all five V0 subunits. Analysis of vmaDelta strains showed that binding of V0 subunits to Vma21p was mediated by the proteolipid subunit Vma11p. Although Vma21p/proteolipid interactions were independent of Vph1p, Vma21p/Vph1p association was dependent on all other V0 subunits, indicating that assembly of V0 occurs in a defined sequence, with Vph1p recruitment into a Vma21p/proteolipid/Vma6p complex representing the final step. An in vitro assay for ER export was used to demonstrate preferential packaging of the fully assembled Vma21p/proteolipid/Vma6p/Vph1p complex into COPII-coated transport vesicles. Pulse-chase experiments showed that the interaction between Vma21p and V0 was transient and that Vma21p/V0 dissociation was concomitant with V0/V1 assembly. Blocking ER export in vivo stabilized the interaction between Vma21p and V0 and abrogated assembly of V0/V1. Although a Vma21p mutant lacking an ER-retrieval signal remained associated with V0 in the vacuole, this interaction did not affect the assembly of vacuolar V0/V1 complexes. We conclude that Vma21p is not involved in regulating the interaction between V0 and V1 sectors, but that it has a crucial role in coordinating the assembly of V0 subunits and in escorting the assembled V0 complex into ER-derived transport vesicles.


Asunto(s)
Proteínas de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , ATPasas de Translocación de Protón Vacuolares/química , Vesículas Cubiertas por Proteínas de Revestimiento/química , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Genotipo , Glicerol/química , Inmunoprecipitación , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Protones , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Tiempo , ATPasas de Translocación de Protón Vacuolares/fisiología
7.
Cell ; 114(4): 497-509, 2003 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12941277

RESUMEN

We have characterized the mechanisms of cargo selection into ER-derived vesicles by the COPII subunit Sec24p. We identified a site on Sec24p that recognizes the v-SNARE Bet1p and show that packaging of a number of cargo molecules is disrupted when mutations are introduced at this site. Surprisingly, cargo proteins affected by these mutations did not share a single common sorting signal, nor were proteins sharing a putative class of signal affected to the same degree. We show that the same site is conserved as a cargo-interaction domain on the Sec24p homolog Lst1p, which only packages a subset of the cargoes recognized by Sec24p. Finally, we identified an additional mutation that defines another cargo binding domain on Sec24p, which specifically interacts with the SNARE Sec22p. Together, our data support a model whereby Sec24p proteins contain multiple independent cargo binding domains that allow for recognition of a diverse set of sorting signals.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Proteínas Portadoras/genética , Proteínas Activadoras de GTPasa , Sustancias Macromoleculares , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosfoproteínas/genética , Unión Proteica , Señales de Clasificación de Proteína , Estructura Cuaternaria de Proteína , Transporte de Proteínas/fisiología , Proteínas Qc-SNARE , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Proteínas de Transporte Vesicular
8.
J Cell Biol ; 159(6): 915-21, 2002 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-12499351

RESUMEN

Here, we show that efficient transport of membrane and secretory proteins from the ER of Saccharomyces cerevisiae requires concentrative and signal-mediated sorting. Three independent markers of bulk flow transport out of the ER indicate that in the absence of an ER export signal, molecules are inefficiently captured into coat protein complex II (COPII)-coated vesicles. A soluble secretory protein, glycosylated pro-alpha-factor (gpalphaf), was enriched approximately 20 fold in these vesicles relative to bulk flow markers. In the absence of Erv29p, a membrane protein that facilitates gpalphaf transport (Belden and Barlowe, 2001), gpalphaf is packaged into COPII vesicles as inefficiently as soluble bulk flow markers. We also found that a plasma membrane protein, the general amino acid permease (Gap1p), is enriched approximately threefold in COPII vesicles relative to membrane phospholipids. Mutation of a diacidic sequence present in the COOH-terminal cytosolic domain of Gap1p eliminated concentrative sorting of this protein.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Citosol/metabolismo , Bases de Datos como Asunto , Retículo Endoplásmico/metabolismo , Immunoblotting , Microsomas/metabolismo , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Precursores de Proteínas/metabolismo , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...