Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 13(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37119803

RESUMEN

Holosteans (gars and bowfins) represent the sister lineage to teleost fishes, the latter being a clade that comprises over half of all living vertebrates and includes important models for comparative genomics and human health. A major distinction between the evolutionary history of teleosts and holosteans is that all teleosts experienced a genome duplication event in their early evolutionary history. As the teleost genome duplication occurred after teleosts diverged from holosteans, holosteans have been heralded as a means to bridge teleost models to other vertebrate genomes. However, only three species of holosteans have been genome-sequenced to date, and sequencing of more species is needed to fill sequence sampling gaps and provide a broader comparative basis for understanding holostean genome evolution. Here we report the first high quality reference genome assembly and annotation of the longnose gar (Lepisosteus osseus). Our final assembly consists of 22,709 scaffolds with a total length of 945 bp with contig N50 of 116.61 kb. Using BRAKER2, we annotated a total of 30,068 genes. Analysis of the repetitive regions of the genome reveals the genome to contain 29.12% transposable elements, and the longnose gar to be the only other known vertebrate outside of the spotted gar and bowfin to contain CR1, L2, Rex1, and Babar. These results highlight the potential utility of holostean genomes for understanding the evolution of vertebrate repetitive elements, and provide a critical reference for comparative genomic studies utilizing ray-finned fish models.


Asunto(s)
Evolución Molecular , Peces , Humanos , Animales , Peces/genética , Genoma , Cromosomas/genética , Filogenia
2.
Hum Genomics ; 16(1): 56, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369063

RESUMEN

Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.


Asunto(s)
Evolución Molecular , Genómica , Animales , Humanos , Genoma , Secuencia de Bases , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...