Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 609(7926): 335-340, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35853476

RESUMEN

Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.


Asunto(s)
Acinetobacter baumannii , Microscopía por Crioelectrón , Fimbrias Bacterianas , Chaperonas Moleculares , Acinetobacter baumannii/citología , Acinetobacter baumannii/ultraestructura , Elasticidad , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestructura
2.
Microorganisms ; 8(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340400

RESUMEN

Acinetobacter baumannii is an opportunistic bacterial pathogen associated with hospital-acquired infections, including pneumonia, meningitis, bacteremia, urinary tract infection, and wound infections. Recognition of host cell surface carbohydrates plays a crucial role in adhesion and enables microbes to colonize different host niches. Here the potential glycosphingolipid receptors of A. baumannii were examined by binding of 35S-labeled bacteria to glycosphingolipids on thin-layer chromatograms. Thereby a selective interaction with two non-acid glycosphingolipids of human and rabbit small intestine was found. The binding-active glycosphingolipids were isolated and, on the basis of mass spectrometry, identified as neolactotetraosylceramide (Galß4GlcNAcß3Galß4Glcß1Cer) and lactotetraosylceramide (Galß3GlcNAcß3Galß4Glcß1Cer). Further binding assays using reference glycosphingolipids showed that A. baumannii also bound to lactotriaosylceramide (GlcNAcß3Galß4Glcß1Cer) demonstrating that GlcNAc was the basic element recognized. In addition, the bacteria occasionally bound to galactosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, isoglobotriaosylceramide, gangliotriaosylceramide, and gangliotetraosylceramide, in analogy with binding patterns that previously have been described for other bacteria classified as "lactosylceramide-binding". Finally, by isolation and characterization of glycosphingolipids from human skin, the presence of neolactotetraosylceramide was demonstrated in this A. baumannii target tissue.

3.
J Biol Chem ; 293(44): 17070-17080, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30228191

RESUMEN

Adhesive pili are external component of fibrous adhesive organelles and help bacteria attach to biotic or abiotic surfaces. The biogenesis of adhesive pili via the chaperone-usher pathway (CUP) is independent of external energy sources. In the classical CUP, chaperones transport assembly-competent pilins in a folded but expanded conformation. During donor-strand exchange, pilins subsequently collapse, producing a tightly packed hydrophobic core and releasing the necessary free energy to drive fiber formation. Here, we show that pilus biogenesis in non-classical, archaic, and alternative CUPs uses a different source of conformational energy. High-resolution structures of the archaic Csu-pili system from Acinetobacter baumannii revealed that non-classical chaperones employ a short donor strand motif that is insufficient to fully complement the pilin fold. This results in chaperone-bound pilins being trapped in a substantially unfolded intermediate. The exchange of this short motif with the longer donor strand from adjacent pilin provides the full steric information essential for folding, and thereby induces a large unfolded-to-folded conformational transition to drive assembly. Our findings may inform the development of anti-adhesion drugs (pilicides) to combat bacterial infections.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Chaperonas Moleculares/metabolismo , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Pliegue de Proteína
4.
Proc Natl Acad Sci U S A ; 115(21): 5558-5563, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735695

RESUMEN

Acinetobacter baumannii-a leading cause of nosocomial infections-has a remarkable capacity to persist in hospital environments and medical devices due to its ability to form biofilms. Biofilm formation is mediated by Csu pili, assembled via the "archaic" chaperone-usher pathway. The X-ray structure of the CsuC-CsuE chaperone-adhesin preassembly complex reveals the basis for bacterial attachment to abiotic surfaces. CsuE exposes three hydrophobic finger-like loops at the tip of the pilus. Decreasing the hydrophobicity of these abolishes bacterial attachment, suggesting that archaic pili use tip-fingers to detect and bind to hydrophobic cavities in substrates. Antitip antibody completely blocks biofilm formation, presenting a means to prevent the spread of the pathogen. The use of hydrophilic materials instead of hydrophobic plastics in medical devices may represent another simple and cheap solution to reduce pathogen spread. Phylogenetic analysis suggests that the tip-fingers binding mechanism is shared by all archaic pili carrying two-domain adhesins. The use of flexible fingers instead of classical receptor-binding cavities is presumably more advantageous for attachment to structurally variable substrates, such as abiotic surfaces.


Asunto(s)
Acinetobacter baumannii/química , Adhesinas Bacterianas/química , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/química , Biopelículas/crecimiento & desarrollo , Fimbrias Bacterianas/química , Chaperonas Moleculares/química , Acinetobacter baumannii/metabolismo , Adhesinas Bacterianas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Fimbrias Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Filogenia , Homología de Secuencia
5.
Nat Commun ; 5: 3408, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24598909

RESUMEN

Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series antimicrobials allosterically inhibit transcription by binding to a conserved α helix (ß' bridge helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of the BH-ß subunit contacts by amino-acid substitutions invariably results in accelerated catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703 partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the ß' F-loop and the ß fork loop. Collectively, our data are consistent with a model in which the ß subunit fine tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate transcription by increasing coupling between the BH and the ß subunit.


Asunto(s)
Amidinas/metabolismo , Antiinfecciosos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Hidroxilaminas/metabolismo , Amidinas/química , Amidinas/farmacología , Sustitución de Aminoácidos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis/efectos de los fármacos , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Hidroxilaminas/química , Hidroxilaminas/farmacología , Cinética , Modelos Moleculares , Estructura Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...