Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114211, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38722741

RESUMEN

Multiple myeloma (MM) remains an incurable hematological malignancy demanding innovative therapeutic strategies. Targeting MYC, the notorious yet traditionally undruggable oncogene, presents an appealing avenue. Here, using a genome-scale CRISPR-Cas9 screen, we identify the WNK lysine-deficient protein kinase 1 (WNK1) as a regulator of MYC expression in MM cells. Genetic and pharmacological inhibition of WNK1 reduces MYC expression and, further, disrupts the MYC-dependent transcriptional program. Mechanistically, WNK1 inhibition attenuates the activity of the immunoglobulin heavy chain (IgH) enhancer, thus reducing MYC transcription when this locus is translocated near the MYC locus. WNK1 inhibition profoundly impacts MM cell behaviors, leading to growth inhibition, cell-cycle arrest, senescence, and apoptosis. Importantly, the WNK inhibitor WNK463 inhibits MM growth in primary patient samples as well as xenograft mouse models and exhibits synergistic effects with various anti-MM compounds. Collectively, our study uncovers WNK1 as a potential therapeutic target in MM.

2.
Cell Rep ; 43(4): 114041, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573857

RESUMEN

CD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression. Genetic ablation of GPAA1 abolishes CD24 cell surface expression, enhances macrophage-mediated phagocytosis, and inhibits ovarian tumor growth in mice. GPAA1 shares structural similarities with aminopeptidases. Consequently, we show that bestatin, a clinically advanced aminopeptidase inhibitor, binds to GPAA1 and blocks GPI attachment, resulting in reduced CD24 cell surface expression, increased macrophage-mediated phagocytosis, and suppressed growth of ovarian tumors. Our study highlights the potential of targeting GPAA1 as an immunotherapeutic approach for CD24+ ovarian cancers.


Asunto(s)
Aciltransferasas , Antígeno CD24 , Neoplasias Ováricas , Fagocitosis , Animales , Femenino , Humanos , Ratones , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Antígeno CD24/metabolismo , Línea Celular Tumoral , Glicosilfosfatidilinositoles/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia
3.
Biology (Basel) ; 12(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37508427

RESUMEN

The advent of next-generation sequencing (NGS) has brought about a paradigm shift in genomics research, offering unparalleled capabilities for analyzing DNA and RNA molecules in a high-throughput and cost-effective manner. This transformative technology has swiftly propelled genomics advancements across diverse domains. NGS allows for the rapid sequencing of millions of DNA fragments simultaneously, providing comprehensive insights into genome structure, genetic variations, gene expression profiles, and epigenetic modifications. The versatility of NGS platforms has expanded the scope of genomics research, facilitating studies on rare genetic diseases, cancer genomics, microbiome analysis, infectious diseases, and population genetics. Moreover, NGS has enabled the development of targeted therapies, precision medicine approaches, and improved diagnostic methods. This review provides an insightful overview of the current trends and recent advancements in NGS technology, highlighting its potential impact on diverse areas of genomic research. Moreover, the review delves into the challenges encountered and future directions of NGS technology, including endeavors to enhance the accuracy and sensitivity of sequencing data, the development of novel algorithms for data analysis, and the pursuit of more efficient, scalable, and cost-effective solutions that lie ahead.

4.
Life Sci ; 328: 121857, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307965

RESUMEN

Cell-based immunotherapies have become an exciting avenue for cancer treatment, particularly CAR T cells, which have shown great success in treating hematological malignancies. However, the limited success of T cell-based approaches in treating solid tumors has sparked interest in alternative cell types that could be used for solid tumor immunotherapy. Recent research has pointed to macrophages as a potential solution, given their ability to infiltrate solid tumors, exhibit a strong anti-tumor response, and persist long-term in the tumor microenvironment. Although early attempts with ex-vivo activated macrophage-based therapies failed to translate into clinical success, the field has revolutionized with the recent development of chimeric antigen receptor-expressing macrophages (CAR-M). While CAR-M therapy has reached the clinical trial stage, several challenges still need to be overcome before the therapy can become a reality. Here we review the evolution of macrophage-based cell therapy and evaluate recent studies and developments, emphasizing the potential of macrophages as cellular therapeutics. Furthermore, we also discuss the challenges and opportunities associated with using macrophages as a basis for therapeutic interventions.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Neoplasias/terapia , Inmunoterapia , Inmunoterapia Adoptiva , Microambiente Tumoral , Macrófagos
5.
Diseases ; 10(3)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36135216

RESUMEN

Recent advances in cancer immunology have enabled the discovery of promising immunotherapies for various malignancies that have shifted the cancer treatment paradigm. The innovative research and clinical advancements of immunotherapy approaches have prolonged the survival of patients with relapsed or refractory metastatic cancers. Since the U.S. FDA approved the first immune checkpoint inhibitor in 2011, the field of cancer immunotherapy has grown exponentially. Multiple therapeutic approaches or agents to manipulate different aspects of the immune system are currently in development. These include cancer vaccines, adoptive cell therapies (such as CAR-T or NK cell therapy), monoclonal antibodies, cytokine therapies, oncolytic viruses, and inhibitors targeting immune checkpoints that have demonstrated promising clinical efficacy. Multiple immunotherapeutic approaches have been approved for specific cancer treatments, while others are currently in preclinical and clinical trial stages. Given the success of immunotherapy, there has been a tremendous thrust to improve the clinical efficacy of various agents and strategies implemented so far. Here, we present a comprehensive overview of the development and clinical implementation of various immunotherapy approaches currently being used to treat cancer. We also highlight the latest developments, emerging trends, limitations, and future promises of cancer immunotherapy.

6.
Vaccines (Basel) ; 11(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36679900

RESUMEN

The revolution in cancer immunotherapy over the last few decades has resulted in a paradigm shift in the clinical care of cancer. Most of the cancer immunotherapeutic regimens approved so far have relied on modulating the adaptive immune system. In recent years, strategies and approaches targeting the components of innate immunity have become widely recognized for their efficacy in targeting solid cancers. Macrophages are effector cells of the innate immune system, which can play a crucial role in the generation of anti-tumor immunity through their ability to phagocytose cancer cells and present tumor antigens to the cells of adaptive immunity. However, the macrophages that are recruited to the tumor microenvironment predominantly play pro-tumorigenic roles. Several strategies targeting pro-tumorigenic functions and harnessing the anti-tumorigenic properties of macrophages have shown promising results in preclinical studies, and a few of them have also advanced to clinical trials. In this review, we present a comprehensive overview of the pathobiology of TAMs and their role in the progression of solid malignancies. We discuss various mechanisms through which TAMs promote tumor progression, such as inflammation, genomic instability, tumor growth, cancer stem cell formation, angiogenesis, EMT and metastasis, tissue remodeling, and immunosuppression, etc. In addition, we also discuss potential therapeutic strategies for targeting TAMs and explore how macrophages can be used as a tool for next-generation immunotherapy for the treatment of solid malignancies.

7.
J Biol Chem ; 297(4): 101253, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34587475

RESUMEN

Apoptosis is a programmed cell death that efficiently removes damaged cells to maintain tissue homeostasis. Defect in apoptotic machinery can lead to tumor development, progression, and resistance to chemotherapy. PUMA (p53 upregulated modulator of apoptosis) and BAX (BCL2-associated X protein) are among the most well-known inducers of apoptosis. It has been reported that expression levels of BAX and PUMA are controlled at the posttranslational level by phosphorylation. However, the posttranslational regulation of these proapoptotic proteins remains largely unexplored. In this study, using biochemical, molecular biology, flow cytometric, and immunohistochemistry techniques, we show that PUMA and BAX are the direct target of the F-box protein FBXL20, which restricts their cellular levels. FBXL20 directs the proteasomal degradation of PUMA and BAX in a protein kinase AKT1-dependent manner to promote cancer cell proliferation and tumor growth. Interestingly, inactivation of AKT1 results in activation of another protein kinase GSK3α/ß, which facilitates the proteasomal degradation of FBXL20 by another F-box protein, FBXO31. Thus, a switch between two signaling kinases AKT1 and GSK3α/ß modulates the functional activity of these proapoptotic regulators, thereby determining cell survival or death. RNAi-mediated ablation of FBXL20 results in increased levels of PUMA as well as BAX, which further enhances the sensitivity of cancer cells to chemotherapeutic drugs. We showed that high level expression of FBXL20 in cancer cells reduces therapeutic drug-induced apoptosis and promotes chemoresistance. Overall, this study highlights the importance of targeting FBXL20 in cancers in conjunction with chemotherapy and may represent a promising anticancer strategy to overcome chemoresistance.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Neoplasias de la Mama/metabolismo , Proteínas F-Box/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Proteínas F-Box/genética , Femenino , Células HEK293 , Humanos , Células MCF-7 , Proteínas Proto-Oncogénicas/genética , Proteína X Asociada a bcl-2/genética
8.
J Pathol ; 248(3): 266-279, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30714168

RESUMEN

Aberrant activation of ß-catenin has been implicated in a variety of human diseases, including cancer. In spite of significant progress, the regulation of active Wnt/ß-catenin-signaling pathways is still poorly understood. In this study, we show that F-box protein 16 (FBXO16) is a putative tumor suppressor. It is a component of the SCF (SKP1-Cullin1-F-box protein) complex, which targets the nuclear ß-catenin protein to facilitate proteasomal degradation through the 26S proteasome. FBXO16 interacts physically with the C-terminal domain of ß-catenin and promotes its lysine 48-linked polyubiquitination. In addition, it inhibits epithelial-to-mesenchymal transition (EMT) by attenuating the level of ß-catenin. Therefore, depletion of FBXO16 leads to increased levels of ß-catenin, which then promotes cell invasion, tumor growth, and EMT of cancer cells. Furthermore, FBXO16 and ß-catenin share an inverse correlation of cellular expression in clinical breast cancer patient samples. In summary, we propose that FBXO16 functions as a putative tumor suppressor by forming an SCFFBXO16 complex that targets nuclear ß-catenin in a unique manner for ubiquitination and subsequent proteasomal degradation to prevent malignancy. This work suggests a novel therapeutic strategy against human cancers related to aberrant ß-catenin activation. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteínas F-Box/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Transición Epitelial-Mesenquimal/genética , Genes Supresores de Tumor/fisiología , Humanos , Proteínas Nucleares/metabolismo , Vía de Señalización Wnt/fisiología
9.
Proc Natl Acad Sci U S A ; 115(5): 998-1003, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29343641

RESUMEN

The F-box protein FBXO31 is a tumor suppressor that is encoded in 16q24.3, for which there is loss of heterozygosity in various solid tumors. FBXO31 serves as the substrate-recognition component of the SKP/Cullin/F-box protein class of E3 ubiquitin ligases and has been shown to direct degradation of pivotal cell-cycle regulatory proteins including cyclin D1 and the p53 antagonist MDM2. FBXO31 levels are normally low but increase substantially following genotoxic stress through a mechanism that remains to be determined. Here we show that the low levels of FBXO31 are maintained through proteasomal degradation by anaphase-promoting complex/cyclosome (APC/C). We find that the APC/C coactivators CDH1 and CDC20 bind to a destruction-box (D-box) motif present in FBXO31 to promote its polyubiquitination and degradation in a cell-cycle-regulated manner, which requires phosphorylation of FBXO31 on serine-33 by the prosurvival kinase AKT. Following genotoxic stress, phosphorylation of FBXO31 on serine-278 by another kinase, the DNA damage kinase ATM, results in disruption of its interaction with CDH1 and CDC20, thereby preventing FBXO31 degradation. Collectively, our results reveal how alterations in FBXO31 phosphorylation, mediated by AKT and ATM, underlie physiological regulation of FBXO31 levels in unstressed and genotoxically stressed cells.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas F-Box/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/antagonistas & inhibidores , Ciclosoma-Complejo Promotor de la Anafase/genética , Antígenos CD , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Cdc20/antagonistas & inhibidores , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Proteínas F-Box/química , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Modelos Biológicos , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN Interferente Pequeño/genética , Proteínas Supresoras de Tumor/química , Ubiquitinación
10.
Proc Natl Acad Sci U S A ; 114(14): 3648-3653, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28320962

RESUMEN

Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.


Asunto(s)
Anticuerpos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor fas/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Mutación , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Regulación hacia Arriba
11.
Proc Natl Acad Sci U S A ; 112(28): 8632-7, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124108

RESUMEN

The tumor suppressor p53 plays a critical role in maintaining genomic stability. In response to genotoxic stress, p53 levels increase and induce cell-cycle arrest, senescence, or apoptosis, thereby preventing replication of damaged DNA. In unstressed cells, p53 is maintained at a low level. The major negative regulator of p53 is MDM2, an E3 ubiquitin ligase that directly interacts with p53 and promotes its polyubiquitination, leading to the subsequent destruction of p53 by the 26S proteasome. Following DNA damage, MDM2 is degraded rapidly, resulting in increased p53 stability. Because of the important role of MDM2 in modulating p53 function, it is critical to understand how MDM2 levels are regulated. Here we show that the F-box protein FBXO31, a candidate tumor suppressor encoded in 16q24.3 for which there is loss of heterozygosity in various solid tumors, is responsible for promoting MDM2 degradation. Following genotoxic stress, FBXO31 is phosphorylated by the DNA damage serine/threonine kinase ATM, resulting in increased levels of FBXO31. FBXO31 then interacts with and directs the degradation of MDM2, which is dependent on phosphorylation of MDM2 by ATM. FBXO31-mediated loss of MDM2 leads to elevated levels of p53, resulting in growth arrest. In cells depleted of FBXO31, MDM2 is not degraded and p53 levels do not increase following genotoxic stress. Thus, FBXO31 is essential for the classic robust increase in p53 levels following DNA damage.


Asunto(s)
División Celular/fisiología , Proteínas F-Box/fisiología , Mutágenos/toxicidad , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Daño del ADN , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteolisis
12.
Indian J Med Res ; 142(6): 732-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26831422

RESUMEN

BACKGROUND & OBJECTIVES: Studies involving animal models of experimental tuberculosis have elucidated the predominant role of cytokines secreted by T cells and macrophages to be an essential component of the immune response against Mycobacterium tuberculosis infection. The immune activities of CD4+ T cells are mediated in part by Th1 cytokine interferon gamma (IFN-γ) which is produced primarily by T cells and natural killer (NK) cells and critical for initiating the immune response against intracellular pathogen such as M. tuberculosis. Nuclear matrix protein SMAR1 plays an important role in V(D)J recombination, T helper cell differentiation and inflammatory diseases. In this study a transgenic mouse model was used to study the role of SMAR1 in M. tuberculosis infection. METHODS: Wild type BALB/c, C57BL/6, BALB/c-EGFP-SMAR1 and C57BL/6-SMAR1 transgenic mice were infected with M. tuberculosis (H37Rv). A dose of 100 bacilli was used for infection via respiratory route. Bacterial load in lung and spleen of infected mice was determined at 2, 4, 6 and 8 wk post-infection. Gene expression analysis for Th1 cytokines and inducible nitric oxide synthase (iNOS) was performed in infected lung tissues by quantitative reverse transcription (RT)-PCR. RESULTS: SMAR1 transgenic mice from both BALB/c and C57BL/6 genetic background displayed higher bacillary load and susceptibility to M. tuberculosis infection compared to wild type mice. This susceptibility was attributed due to compromised of Th1 response exhibited by transgenic mice. INTERPRETATION & CONCLUSIONS: SMAR1 transgenic mice exhibited susceptibility to M. tuberculosis infection in vivo irrespective of genetic background. This susceptibility was attributed to downregulation of Th1 response and its hallmark cytokine IFN-γ. Hence, SMAR1 plays an important role in modulating host immune response after M. tuberculosis infection.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Modelos Animales de Enfermedad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Proteínas Nucleares/fisiología , Tuberculosis/inmunología , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Interferón gamma/metabolismo , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Células TH1/inmunología , Tuberculosis/microbiología
13.
Int J Biochem Cell Biol ; 55: 220-6, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25239884

RESUMEN

Interleukin-8 (IL-8) is a pleiotropic chemokine involved in metastasis and angiogenesis of breast tumors. The expression of IL-8 is deregulated in metastatic breast carcinomas owing to aberrant NF-κB activity, which is known to positively regulate IL-8 transcription. Earlier, we have shown that tumor suppressor SMAR1 suppresses NF-κB transcriptional activity by modulating IκBα function. Here, we show that NF-κB target gene IL-8, is a direct transcriptional target of SMAR1. Using chromatin immunoprecipitation and reporter assays, we demonstrate that SMAR1 binds to IL-8 promoter MAR (matrix attachment region) and recruits HDAC1 dependent co-repressor complex. Further, we also show that SMAR1 antagonizes p300-mediated acetylation of RelA/p65, a post-translational modification indispensable for IL-8 transactivation. Thus, we decipher a new role of SMAR1 in NF-κB dependent transcriptional regulation of pro-angiogenic chemokine IL-8.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Interleucina-8/genética , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Acetilación , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasa 1/metabolismo , Humanos , Immunoblotting , Células MCF-7 , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción ReIA/metabolismo , Transcripción Genética
14.
Genes Dev ; 27(20): 2221-6, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24105743

RESUMEN

We previously identified 28 cofactors through which a RAS oncoprotein directs transcriptional silencing of Fas and other tumor suppressor genes (TSGs). Here we performed RNAi-based epistasis experiments and found that RAS-directed silencing occurs through a highly ordered pathway that is initiated by binding of ZFP354B, a sequence-specific DNA-binding protein, and culminates in recruitment of the DNA methyltransferase DNMT1. RNAi and pharmacological inhibition experiments reveal that silencing requires continuous function of RAS and its cofactors and can be rapidly reversed, which may have therapeutic implications for reactivation of silenced TSGs in RAS-positive cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Genes Supresores de Tumor , Proteínas ras/metabolismo , Animales , Metilación de ADN , Epigénesis Genética , Ratones , Modelos Biológicos , Células 3T3 NIH , Unión Proteica , Interferencia de ARN , Transducción de Señal , Receptor fas/genética , Receptor fas/metabolismo , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA