Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Intervalo de año de publicación
2.
IMA Fungus ; 12(1): 11, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33934723

RESUMEN

It is now a decade since The International Commission on the Taxonomy of Fungi (ICTF) produced an overview of requirements and best practices for describing a new fungal species. In the meantime the International Code of Nomenclature for algae, fungi, and plants (ICNafp) has changed from its former name (the International Code of Botanical Nomenclature) and introduced new formal requirements for valid publication of species scientific names, including the separation of provisions specific to Fungi and organisms treated as fungi in a new Chapter F. Equally transformative have been changes in the data collection, data dissemination, and analytical tools available to mycologists. This paper provides an updated and expanded discussion of current publication requirements along with best practices for the description of new fungal species and publication of new names and for improving accessibility of their associated metadata that have developed over the last 10 years. Additionally, we provide: (1) model papers for different fungal groups and circumstances; (2) a checklist to simplify meeting (i) the requirements of the ICNafp to ensure the effective, valid and legitimate publication of names of new taxa, and (ii) minimally accepted standards for description; and, (3) templates for preparing standardized species descriptions.

3.
Nat Microbiol ; 6(5): 540-548, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33903746

RESUMEN

The identification and proper naming of microfungi, in particular plant, animal and human pathogens, remains challenging. Molecular identification is becoming the default approach for many fungal groups, and environmental metabarcoding is contributing an increasing amount of sequence data documenting fungal diversity on a global scale. This includes lineages represented only by sequence data. At present, these taxa cannot be formally described under the current nomenclature rules. By considering approaches used in bacterial taxonomy, we propose solutions for the nomenclature of taxa known only from sequences to facilitate consistent reporting and communication in the literature and public sequence repositories.


Asunto(s)
Hongos/clasificación , Hongos/aislamiento & purificación , Animales , ADN de Hongos/genética , Microbiología Ambiental , Hongos/genética , Humanos , Micosis/microbiología , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Terminología como Asunto
4.
IMA Fungus ; 11(1): 25, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33292779

RESUMEN

It is common practice in scientific journals to print genus and species names in italics. This is not only historical as species names were traditionally derived from Greek or Latin. Importantly, it also facilitates the rapid recognition of genus and species names when skimming through manuscripts. However, names above the genus level are not always italicized, except in some journals which have adopted this practice for all scientific names. Since scientific names treated under the various Codes of nomenclature are without exception treated as Latin, there is no reason why names above genus level should be handled differently, particularly as higher taxon names are becoming increasingly relevant in systematic and evolutionary studies and their italicization would aid the unambiguous recognition of formal scientific names distinguishing them from colloquial names. Several leading mycological and botanical journals have already adopted italics for names of all taxa regardless of rank over recent decades, as is the practice in the International Code of Nomenclature for algae, fungi, and plants, and we hereby recommend that this practice be taken up broadly in scientific journals and textbooks.

5.
IMA Fungus ; 11: 14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714773

RESUMEN

True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.

6.
Fungal Biol ; 123(9): 660-668, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31416585

RESUMEN

Riparian forests are important to aquatic ecosystems and produce large quantities of organic matter that are recycled by the microbial community that includes microscopic fungi. The aim of this study was to unveil and compare the diversity of aquatic hyphomycetes associated to submerged leaf litter of tropical lotic and lentic environments in the Atlantic Forest of Northeast Brazil. Six sampling events were carried out in six points of two study areas: Biological Reserve "Mata da Chuva" (MC) and Environmental Protection Area "Lagoa da Mata" (LM), in Pernambuco, Brazil. Twenty three taxa of hyphomycetes were identified resulting in 87 occurrences. In the lake LM, 13 taxa of hyphomycetes were identified with 34 occurrences and in the MC (stream), 20 taxa with 53 occurrences. Ten species were common to both areas. Diversity indices and fungal biomass (ergosterol) were mostly higher in the lotic system. The fungal community analysis did not show any structure regarding sampling periods or sampling points within an area, however the two areas are different. Although the turbulence of the water is considered important for the development of these aquatic fungi, it is possible to find a diverse community of hyphomycetes and considerable fungal biomass in the lentic environment.


Asunto(s)
Lagos/microbiología , Hongos Mitospóricos/aislamiento & purificación , Ríos/microbiología , Biomasa , Brasil , Ecosistema , Lagos/química , Hongos Mitospóricos/clasificación , Hongos Mitospóricos/genética , Hongos Mitospóricos/crecimiento & desarrollo , Micobioma , Filogenia , Bosque Lluvioso , Ríos/química
7.
Rev Biol Trop ; 62(3): 1197-208, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25412544

RESUMEN

Ganoderma includes species of great economic and ecological importance, but taxonomists judge the current nomenclatural situation as chaotic and poorly studied in the neotropics. From this perspective, phylogenetic analyses inferred from ribosomal DNA sequences have aided the clarification of the genus status. In this study, 14 specimens of Ganoderma and two of Tomophagus collected in Brazil were used for DNA extraction, amplification and sequencing of the ITS and LSU regions (rDNA). The phylogenetic delimitation of six neotropical taxa (G. chalceum, G. multiplicatum, G. orbiforme, G. parvulum, G. aff. oerstedtii and Tomophagus colossus) was determined based on these Brazilian specimens and found to be distinct from the laccate Ganoderma from Asia, Europe, North America and from some specimens from Argentina. Phylogenetic reconstructions confirmed that the laccate Ganoderna is distinct from Tomophagus, although they belong to the same group. The use of taxonomic synonyms Ganoderma subamboinense for G. multiplicatumnz, G. boninense for G. orbiforme and G. chalceum for G. cupreum was not confirmed. However, Ganoderma parvulum was confirmed as the correct name for specimens called G. stipitatu. Furthermore, the name G. hucidumn should be used only for European species. The use of valid published names is proposed according to the specimen geographical distribution, their morphological characteristics and rDNA analysis. 1208. Epub 2014 September 01.


Asunto(s)
ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Ganoderma/citología , Ganoderma/genética , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
8.
Rev. biol. trop ; 62(3): 1197-1208, jul.-sep. 2014. ilus, tab
Artículo en Español | LILACS | ID: lil-753682

RESUMEN

Ganoderma includes species of great economic and ecological importance, but taxonomists judge the current nomenclatural situation as chaotic and poorly studied in the neotropics. From this perspective, phylogenetic analyses inferred from ribosomal DNA sequences have aided the clarification of the genus status. In this study, 14 specimens of Ganoderma and two of Tomophagus collected in Brazil were used for DNA extraction, amplification and sequencing of the ITS and LSU regions (rDNA). The phylogenetic delimitation of six neotropical taxa (G. chalceum, G. multiplicatum, G. orbiforme, G. parvulum, G. aff. oerstedtii and Tomophagus colossus) was determined based on these Brazilian specimens and found to be distinct from the laccate Ganoderma from Asia, Europe, North America and from some specimens from Argentina. Phylogenetic reconstructions confirmed that the laccate Ganoderma is distinct from Tomophagus, although they belong to the same group. The use of taxonomic synonyms Ganoderma subamboinense for G. multiplicatum, G. boninense for G. orbiforme and G. chalceum for G. cupreum was not confirmed. However, Ganoderma parvulum was confirmed as the correct name for specimens called G. stipitatum. Furthermore, the name G. lucidum should be used only for European species. The use of valid published names is proposed according to the specimen geographical distribution, their morphological characteristics and rDNA analysis. Rev. Biol. Trop. 62 (3): 1197-1208. Epub 2014 September 01.


Ganoderma incluye especies de gran importancia económica y ecológica, sin embargo, su nomenclatura actual es caótica y poco estudiada en el neotrópico. En este estudio se utilizaron 14 muestras de Ganoderma y dos de Tomophagus recolectados en Brasil para la extracción de ADN, amplificación y secuenciación de las regiones ITS y LSU. La delimitación filogenética de seis táxones neotropicales fue discutida con base en especímenes brasileños y secuencias del GenBank. Estas especies mostraron ser distintas de los Ganoderma lacados de Asia, Europa, América del Norte y de algunos ejemplares de Argentina. Las reconstrucciones filogenéticas confirman que los Ganoderma lacados son distintos de Tomophagus, aunque pertenecen al mismo grupo. No se confirman los sinónimos de G. subamboinense a G. multiplicatum, de G. boninense a G. orbiforme y G. chalceum a G. cupreum. G. parvulum se confirma como el nombre correcto para G. stipitatum. G. lucidum sólo se debe utilizar para especies europeas. Por lo tanto, se propone el uso de nombres publicados válidamente de acuerdo con la distribución geográfica de las muestras, características morfológicas y análisis de ADNr.


Asunto(s)
ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Ganoderma/citología , Ganoderma/genética , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
9.
Braz. j. microbiol ; 42(1): 89-95, Jan.-Mar. 2011. tab
Artículo en Inglés | LILACS | ID: lil-571379

RESUMEN

Thirty-eight taxa of Zygomycetes distributed in 15 genera were recorded from tapir (Tapirus terrestris), camel (Camelus bactrianus), horse (Equus caballus), deer (Cervus elaphus), agouti (Dasyprocta aguti), donkey (Equus asinus), llama (Llama glama) and waterbuck (Kobus ellipsiprymnus) dung collected at the Reserva Ecológica de Dois Irmãos located in Recife, State of Pernambuco, Northeast Brazil. The samples were collected on a monthly basis from June 2005 to May 2006, taken to the laboratory and incubated in moist chambers. Higher number of taxa was observed in the excrements of tapir, followed by deer and donkey. The highest number of species was detected for Mucor, followed by Pilobolus. Statistical analyses showed significant differences in richness of Zygomycetes taxa between the herbivore dung types. Differences of species composition, however, were weak. Seasonality influenced the Zygomycetes species composition but not its richness. Variations in taxa composition between ruminants and non-ruminants dung were non significant.


Asunto(s)
Secuencia de Bases , Bombyx/genética , Cactaceae/genética , Susceptibilidad a Enfermedades , Quitosano/aislamiento & purificación , Reactivadores Enzimáticos/análisis , Serratia marcescens/genética , Serratia marcescens/aislamiento & purificación , Activación Enzimática , Métodos , Métodos , Virulencia
10.
Braz J Microbiol ; 42(1): 89-95, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24031609

RESUMEN

Thirty-eight taxa of Zygomycetes distributed in 15 genera were recorded from tapir (Tapirus terrestris), camel (Camelus bactrianus), horse (Equus caballus), deer (Cervus elaphus), agouti (Dasyprocta aguti), donkey (Equus asinus), llama (Llama glama) and waterbuck (Kobus ellipsiprymnus) dung collected at the Reserva Ecológica de Dois Irmãos located in Recife, State of Pernambuco, Northeast Brazil. The samples were collected on a monthly basis from June 2005 to May 2006, taken to the laboratory and incubated in moist chambers. Higher number of taxa was observed in the excrements of tapir, followed by deer and donkey. The highest number of species was detected for Mucor, followed by Pilobolus. Statistical analyses showed significant differences in richness of Zygomycetes taxa between the herbivore dung types. Differences of species composition, however, were weak. Seasonality influenced the Zygomycetes species composition but not its richness. Variations in taxa composition between ruminants and non-ruminants dung were non significant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...