Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35744308

RESUMEN

Small disks are often the specimen of choice for exposure in nuclear reactor environments, and this geometry invariably limits the types of mechanical testing that can be performed on the specimen. Recently, shear punch testing has been utilized to evaluate changes arising from neutron irradiation in test reactor environments on these small disk specimens. As part of a broader effort to link accelerated testing using ion irradiation and conventional neutron irradiation techniques, a novel microshear specimen geometry was developed for use with heavy-ion irradiated specimens. The technique was demonstrated in pure Cu irradiated to 11 and 110 peak dpa with 10 MeV Cu ions. At 11 peak dpa, the Cu specimen had a high density of small voids in the irradiated region, while at 110 peak dpa, larger voids with an average void swelling of ~20% were observed. Micropillar and microshear specimens both exhibited hardening at 11 dpa, followed by softening at 110 dpa. The close alignment of the new microshear technique and more conventional micropillar testing, and the fact that both follow intuition, is a good first step towards applying microshear testing to a wider range of irradiated materials.

2.
Nanoscale ; 13(48): 20437-20450, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34859248

RESUMEN

In the field of radiation damage of crystalline solids, new highly-concentrated alloys (HCAs) are now considered to be suitable candidate materials for next generation fission/fusion reactors due to recently recorded outstanding radiation tolerance. Despite the preliminarily reported extraordinary properties, the mechanisms of degradation, phase instabilities and decomposition of HCAs are still largely unexplored fields of research. Herein, we investigate the response of a nanocrystalline CoCrCuFeNi HCA to thermal annealing and heavy ion irradiation in the temperature range from 293 to 773 K with the objective to analyze the stability of the nanocrystalline HCA in extreme conditions. The results led to the identification of two regimes of response to irradiation: (i) in which the alloy was observed to be tolerant under extreme irradiation conditions and (ii) in which the alloy is subject to matrix phase instabilities. The formation of FeCo monodomain nanoparticles under these conditions is also reported and a differential phase contrast study in the analytical electron-microscope is carried out to qualitatively probe its magnetic properties.

3.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34684979

RESUMEN

Beyond the current commercial materials, refining the grain size is among the proposed strategies to manufacture resilient materials for industrial applications demanding high resistance to severe environments. Here, large strain machining (LSM) was used to manufacture nanostructured HT-9 steel with enhanced thermal stability, mechanical properties, and ductility. Nanocrystalline HT-9 steels with different aspect rations are achieved. In-situ transmission electron microscopy annealing experiments demonstrated that the nanocrystalline grains have excellent thermal stability up to 700 °C with no additional elemental segregation on the grain boundaries other than the initial carbides, attributing the thermal stability of the LSM materials to the low dislocation densities and strains in the final microstructure. Nano-indentation and micro-tensile testing performed on the LSM material pre- and post-annealing demonstrated the possibility of tuning the material's strength and ductility. The results expound on the possibility of manufacturing controlled nanocrystalline materials via a scalable and cost-effective method, albeit with additional fundamental understanding of the resultant morphology dependence on the LSM conditions.

4.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34684981

RESUMEN

This work highlights some limitations of thermal stability analysis via in-situ transmission electron microscopy (TEM)-annealing experiments on ultrafine and nanocrystalline materials. We provide two examples, one on nanocrystalline pure copper and one on nanocrystalline HT-9 steel, where in-situ TEM-annealing experiments are compared to bulk material annealing experiments. The in-situ TEM and bulk annealing experiments demonstrated different results on pure copper but similar output in the HT-9 steel. The work entails discussion of the results based on literature theoretical concepts, and expound on the inevitability of comparing in-situ TEM annealing experimental results to bulk annealing when used for material thermal stability assessment.

5.
Microsc Microanal ; 26(2): 240-246, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32172720

RESUMEN

Complex material systems in which microstructure and microchemistry are nonuniformly dispersed require three-dimensional (3D) rendering(s) to provide an accurate determination of the physio-chemical nature of the system. Current scanning transmission electron microscope (STEM)-based tomography techniques enable 3D visualization but can be time-consuming, so only select systems or regions are analyzed in this manner. Here, it is presented that through high-efficiency multidimensional STEM acquisition and reconstruction, complex point cloud-like microstructural features can quickly and effectively be reconstructed in 3D. The proposed set of techniques is demonstrated, analyzed, and verified for a high-chromium steel with heterogeneously situated features induced using high-energy neutron bombardment.

6.
Sci Rep ; 8(1): 2897, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440652

RESUMEN

The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity via grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...