Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 31(2): 333-344, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34719824

RESUMEN

The molecular mechanisms that drive the infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the causative agent of coronavirus disease 2019 (COVID-19)-are under intense current scrutiny to understand how the virus operates and to uncover ways in which the disease can be prevented or alleviated. Recent proteomic screens of the interactions between viral and host proteins have identified the human proteins targeted by SARS-CoV-2. The DNA polymerase α (Pol α)-primase complex or primosome-responsible for initiating DNA synthesis during genomic duplication-was identified as a target of nonstructural protein 1 (nsp1), a major virulence factor in the SARS-CoV-2 infection. Here, we validate the published reports of the interaction of nsp1 with the primosome by demonstrating direct binding with purified recombinant components and providing a biochemical characterization of their interaction. Furthermore, we provide a structural basis for the interaction by elucidating the cryo-electron microscopy structure of nsp1 bound to the primosome. Our findings provide biochemical evidence for the reported targeting of Pol α by the virulence factor nsp1 and suggest that SARS-CoV-2 interferes with Pol α's putative role in the immune response during the viral infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas no Estructurales Virales , Microscopía por Crioelectrón , ADN Polimerasa I , ADN Primasa , Humanos , Proteómica , Proteínas no Estructurales Virales/genética , Factores de Virulencia
2.
EMBO J ; 39(18): e104185, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32705708

RESUMEN

Regions of the genome with the potential to form secondary DNA structures pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. How the replisome detects and responds to secondary structures is poorly understood. Here, we show that a core component of the fork protection complex in the eukaryotic replisome, Timeless, harbours in its C-terminal region a previously unappreciated DNA-binding domain that exhibits specific binding to G-quadruplex (G4) DNA structures. We show that this domain contributes to maintaining processive replication through G4-forming sequences, and exhibits partial redundancy with an adjacent PARP-binding domain. Further, this function of Timeless requires interaction with and activity of the helicase DDX11. Loss of both Timeless and DDX11 causes epigenetic instability at G4-forming sequences and DNA damage. Our findings indicate that Timeless contributes to the ability of the replisome to sense replication-hindering G4 formation and ensures the prompt resolution of these structures by DDX11 to maintain processive DNA synthesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Replicación del ADN , G-Cuádruplex , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , ARN Helicasas DEAD-box/genética , ADN Helicasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Dominios Proteicos
3.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30104407

RESUMEN

The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re-deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone-binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating-type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone-binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin-derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone-binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication.


Asunto(s)
Cromatina/metabolismo , ADN Polimerasa I/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , ADN Polimerasa I/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
4.
Nat Commun ; 5: 5506, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25420454

RESUMEN

The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Archaea/enzimología , Proteínas Arqueales/metabolismo , ADN de Archaea/genética , Translocación Genética , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Archaea/química , Archaea/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Roturas del ADN de Doble Cadena , ADN de Archaea/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
5.
Elife ; 2: e00482, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23599895

RESUMEN

The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI:http://dx.doi.org/10.7554/eLife.00482.001.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN de Hongos/biosíntesis , Saccharomyces cerevisiae/genética , Dominio Catalítico , ADN de Hongos/química , Modelos Moleculares , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/enzimología
6.
Biochem Soc Trans ; 41(1): 314-20, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23356304

RESUMEN

During DNA repair by HR (homologous recombination), the ends of a DNA DSB (double-strand break) must be resected to generate single-stranded tails, which are required for strand invasion and exchange with homologous chromosomes. This 5'-3' end-resection of the DNA duplex is an essential process, conserved across all three domains of life: the bacteria, eukaryota and archaea. In the present review, we examine the numerous and redundant helicase and nuclease systems that function as the enzymatic analogues for this crucial process in the three major phylogenetic divisions.


Asunto(s)
Daño del ADN , ADN de Archaea/genética , ADN Bacteriano/genética , ADN/genética , Células Eucariotas/metabolismo , Filogenia
7.
Open Biol ; 2(7): 120099, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22870393

RESUMEN

The successful completion of meiosis is essential for all sexually reproducing organisms. The synaptonemal complex (SC) is a large proteinaceous structure that holds together homologous chromosomes during meiosis, providing the structural framework for meiotic recombination and crossover formation. Errors in SC formation are associated with infertility, recurrent miscarriage and aneuploidy. The current lack of molecular information about the dynamic process of SC assembly severely restricts our understanding of its function in meiosis. Here, we provide the first biochemical and structural analysis of an SC protein component and propose a structural basis for its function in SC assembly. We show that human SC proteins SYCE2 and TEX12 form a highly stable, constitutive complex, and define the regions responsible for their homotypic and heterotypic interactions. Biophysical analysis reveals that the SYCE2-TEX12 complex is an equimolar hetero-octamer, formed from the association of an SYCE2 tetramer and two TEX12 dimers. Electron microscopy shows that biochemically reconstituted SYCE2-TEX12 complexes assemble spontaneously into filamentous structures that resemble the known physical features of the SC central element (CE). Our findings can be combined with existing biological data in a model of chromosome synapsis driven by growth of SYCE2-TEX12 higher-order structures within the CE of the SC.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Modelos Biológicos , Complejos Multiproteicos/química , Multimerización de Proteína , Complejo Sinaptonémico/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
8.
Nucleic Acids Res ; 40(7): 3183-96, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22135300

RESUMEN

Helicase-nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.


Asunto(s)
Proteínas Arqueales/química , ADN Helicasas/química , Desoxirribonucleasas/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , ADN/metabolismo , ADN Helicasas/metabolismo , Desoxirribonucleasas/metabolismo , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , Ribonucleasa H/química , Sulfolobus solfataricus/enzimología
9.
PLoS One ; 5(4): e10083, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20404922

RESUMEN

BACKGROUND: DNA synthesis during replication relies on RNA primers synthesised by the primase, a specialised DNA-dependent RNA polymerase that can initiate nucleic acid synthesis de novo. In archaeal and eukaryotic organisms, the primase is a heterodimeric enzyme resulting from the constitutive association of a small (PriS) and large (PriL) subunit. The ability of the primase to initiate synthesis of an RNA primer depends on a conserved Fe-S domain at the C-terminus of PriL (PriL-CTD). However, the critical role of the PriL-CTD in the catalytic mechanism of initiation is not understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the crystal structure of the yeast PriL-CTD at 1.55 A resolution. The structure reveals that the PriL-CTD folds in two largely independent alpha-helical domains joined at their interface by a [4Fe-4S] cluster. The larger N-terminal domain represents the most conserved portion of the PriL-CTD, whereas the smaller C-terminal domain is largely absent in archaeal PriL. Unexpectedly, the N-terminal domain reveals a striking structural similarity with the active site region of the DNA photolyase/cryptochrome family of flavoproteins. The region of similarity includes PriL-CTD residues that are known to be essential for initiation of RNA primer synthesis by the primase. CONCLUSION/SIGNIFICANCE: Our study reports the first crystallographic model of the conserved Fe-S domain of the archaeal/eukaryotic primase. The structural comparison with a cryptochrome protein bound to flavin adenine dinucleotide and single-stranded DNA provides important insight into the mechanism of RNA primer synthesis by the primase.


Asunto(s)
ADN Primasa/química , Desoxirribodipirimidina Fotoliasa/química , Proteínas de Saccharomyces cerevisiae/química , Dominio Catalítico , Cristalografía por Rayos X , Proteínas Hierro-Azufre/química , Pliegue de Proteína , Subunidades de Proteína , ARN/biosíntesis
10.
DNA Repair (Amst) ; 8(12): 1380-9, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19837014

RESUMEN

The DNA ligase IV-Xrcc4 complex is responsible for the ligation of broken DNA ends in the non-homologous end-joining (NHEJ) pathway of DNA double strand break repair in mammals. Mutations in DNA ligase IV (Lig4) lead to immunodeficiency and radiosensitivity in humans. Only partial structural information for Lig4 and Xrcc4 is available, while the structure of the full-length proteins and their arrangement within the Lig4-Xrcc4 complex is unknown. The C-terminal domain of Xrcc4, whose structure has not been solved, contains phosphorylation sites for DNA-PKcs and is phylogenetically conserved, indicative of a regulatory role in NHEJ. Here, we have purified full length Xrcc4 and the Lig4-Xrcc4 complex, and analysed their structure by single-particle electron microscopy. The three-dimensional structure of Xrcc4 at a resolution of approximately 37A reveals that the C-terminus of Xrcc4 forms a dimeric globular domain connected to the N-terminus by a coiled-coil. The N- and C-terminal domains of Xrcc4 locate at opposite ends of an elongated molecule. The electron microscopy images of the Lig4-Xrcc4 complex were examined by two-dimensional image processing and a double-labelling strategy, identifying the site of the C-terminus of Xrcc4 and the catalytic core of Lig4 within the complex. The catalytic domains of Lig4 were found to be in the vicinity of the N-terminus of Xrcc4. We provide a first sight of the structural organization of the Lig4-Xrcc4 complex, which suggests that the BRCT domains could provide the link of the ligase to Xrcc4 while permitting some movements of the catalytic domains of Lig4. This arrangement may facilitate the ligation of diverse configurations of damaged DNA.


Asunto(s)
ADN Ligasas/metabolismo , ADN Ligasas/ultraestructura , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , ADN/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
11.
EMBO J ; 27(16): 2259-69, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18650935

RESUMEN

The RecA/RAD51 nucleoprotein filament is central to the reaction of homologous recombination (HR). Filament activity must be tightly regulated in vivo as unrestrained HR can cause genomic instability. Our mechanistic understanding of HR is restricted by lack of structural information about the regulatory proteins that control filament activity. Here, we describe a structural and functional analysis of the HR inhibitor protein RecX and its mode of interaction with the RecA filament. RecX is a modular protein assembled of repeated three-helix motifs. The relative arrangement of the repeats generates an elongated and curved shape that is well suited for binding within the helical groove of the RecA filament. Structure-based mutagenesis confirms that conserved basic residues on the concave side of RecX are important for repression of RecA activity. Analysis of RecA filament dynamics in the presence of RecX shows that RecX actively promotes filament disassembly. Collectively, our data support a model in which RecX binding to the helical groove of the filament causes local dissociation of RecA protomers, leading to filament destabilisation and HR inhibition.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Recombinación Genética , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Modelos Moleculares , Datos de Secuencia Molecular , Nucleoproteínas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Rec A Recombinasas/metabolismo , Propiedades de Superficie
12.
Nat Struct Mol Biol ; 14(9): 875-7, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17704817

RESUMEN

Primases synthesize the RNA primers that are necessary for replication of the parental DNA strands. Here we report that the heterodimeric archaeal/eukaryotic primase is an iron-sulfur (Fe-S) protein. Binding of the Fe-S cluster is mediated by an evolutionarily conserved domain at the C terminus of the large subunit. We further show that the Fe-S domain is essential to the unique ability of the eukaryotic primase to start DNA replication.


Asunto(s)
ADN Primasa/metabolismo , Proteínas Hierro-Azufre/metabolismo , ARN , ADN Primasa/química , Espectroscopía de Resonancia por Spin del Electrón , Unión Proteica
13.
Structure ; 13(2): 243-55, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15698568

RESUMEN

DNA-PKcs is a large PI3-kinase-related protein kinase (PIKK) that plays a central role in DNA double-strand break (DSB) repair via nonhomologous end joining. Using cryo-electron microscopy we have now generated an approximately 13 A three-dimensional map of DNA-PKcs, revealing the overall architecture and topology of the 4128 residue polypeptide chain and allowing location of domains. The highly conserved C-terminal PIKK catalytic domain forms a central structure from which FAT and FATC domains protrude. Conformational changes observed in these domains on DNA binding suggest that they transduce DNA-induced conformational changes to the catalytic core and regulate kinase activity. The N-terminal segments form long curved tubular-shaped domains based on helical repeats to create interacting surfaces required for macromolecular assembly. Comparison of DNA-PKcs with another PIKK DNA repair factor, ATM, defines a common architecture for this important protein family.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Serina-Treonina Quinasas/química , Proteínas de la Ataxia Telangiectasia Mutada , Dominio Catalítico , Proteínas de Ciclo Celular/química , Microscopía por Crioelectrón , ADN/metabolismo , Proteína Quinasa Activada por ADN , Activación Enzimática , Humanos , Conformación Molecular , Proteínas Nucleares , Fosfatidilinositol 3-Quinasas/química , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/química
14.
J Mol Biol ; 335(2): 573-82, 2004 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-14672664

RESUMEN

In eukaryotes the non-homologous end-joining repair of double strand breaks in DNA is executed by a series of proteins that bring about the synapsis, preparation and ligation of the broken DNA ends. The mechanism of this process appears to be initiated by the obligate heterodimer (Ku70/Ku86) protein complex Ku that has affinity for DNA ends. Ku then recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The three-dimensional structures of the major part of the Ku heterodimer, representing the DNA-binding core, both free and bound to DNA are known from X-ray crystallography. However, these structures lack a region of ca 190 residues from the C-terminal region (CTR) of the Ku86 subunit (also known as Lupus Ku autoantigen p86, Ku80, or XRCC5) that includes the extreme C-terminal tail that is reported to be sufficient for DNA-PKcs-binding. We have examined the structural characteristics of the Ku86CTR protein expressed in bacteria. By deletion mutagenesis and heteronuclear NMR spectroscopy we localised a globular domain consisting of residues 592-709. Constructs comprising additional residues either to the N-terminal side (residues 543-709), or the C-terminal side (residues 592-732), which includes the putative DNA-PKcs-binding motif, yielded NMR spectra consistent with these extra regions lacking ordered structure. The three-dimensional solution structure of the core globular domain of the C-terminal region of Ku86 (Ku86CTR(592-709)) has been determined using heteronuclear NMR spectroscopy and dynamical simulated annealing using structural restraints from nuclear Overhauser effect spectroscopy, and scalar and residual dipolar couplings. The polypeptide fold comprises six regions of alpha-helical secondary structure that has an overall superhelical topology remotely homologous to the MIF4G homology domain of the human nuclear cap binding protein 80 kDa subunit and the VHS domain of the Drosophila protein Hrs, though strict analysis of the structures suggests that these domains are not functionally related. Two prominent hydrophobic pockets in the gap between helices alpha2 and alpha4 suggest a potential ligand-binding characteristic for this globular domain.


Asunto(s)
Antígenos Nucleares/química , ADN Helicasas , Proteínas de Unión al ADN/química , Secuencia de Aminoácidos , Antígenos Nucleares/metabolismo , Sitios de Unión , ADN/metabolismo , Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte , Escherichia coli/química , Escherichia coli/metabolismo , Autoantígeno Ku , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Complejo Proteico Nuclear de Unión a la Caperuza/química , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Soluciones
15.
EMBO J ; 22(21): 5875-82, 2003 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-14592984

RESUMEN

The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) is essential for the repair of double-stranded DNA breaks (DSBs) in non- homologous end joining (NHEJ) and during V(D)J recombination. DNA-PKcs binds single- and double-stranded DNA in vitro, and in vivo the Ku heterodimer probably helps recruit it to DSBs with high affinity. Once loaded onto DNA, DNA-PKcs acts as a scaffold for other repair factors to generate a multiprotein complex that brings the two DNA ends together. Human DNA-PKcs has been analysed by electron microscopy in the absence and presence of double-stranded DNA, and the three-dimensional reconstruction of DNA-bound DNA-PKcs displays large conformational changes when compared with the unbound protein. DNA-PKcs seems to use a palm-like domain to clip onto the DNA, and this new conformation correlates with the activation of the kinase. We suggest that the observed domain movements might help the binding and maintenance of DNA-PKcs' interaction with DNA at the sites of damage, and that these conformational changes activate the kinase.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN , ADN/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , Proteínas de Ciclo Celular , ADN/genética , Daño del ADN , Proteína Quinasa Activada por ADN , Activación Enzimática , Células HeLa , Humanos , Técnicas In Vitro , Microscopía Electrónica , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares , Conformación Proteica , Proteínas Serina-Treonina Quinasas/ultraestructura , Subunidades de Proteína , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...