Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1251127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822931

RESUMEN

Immunotherapeutic targeting of surface regulatory proteins and pharmacologic inhibition of critical signaling pathways has dramatically shifted our approach to the care of individuals with B cell malignancies. This evolution in therapy reflects the central role of the B cell receptor (BCR) signaling complex and its co-receptors in the pathogenesis of B lineage leukemias and lymphomas. Members of the Fc receptor-like gene family (FCRL1-6) encode cell surface receptors with complex tyrosine-based regulation that are preferentially expressed by B cells. Among them, FCRL1 expression peaks on naïve and memory B cells and is unique in terms of its intracellular co-activation potential. Recent studies in human and mouse models indicate that FCRL1 contributes to the formation of the BCR signalosome, modulates B cell signaling, and promotes humoral responses. Progress in understanding its regulatory properties, along with evidence for its over-expression by mature B cell leukemias and lymphomas, collectively imply important yet unmet opportunities for FCRL1 in B cell development and transformation. Here we review recent advances in FCRL1 biology and highlight its emerging significance as a promising biomarker and therapeutic target in B cell lymphoproliferative disorders.


Asunto(s)
Linfoma , Neoplasias , Animales , Ratones , Humanos , Neoplasias/metabolismo , Linfocitos B/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Receptores de Superficie Celular/metabolismo , Linfoma/metabolismo , Proteínas de la Membrana/metabolismo
2.
Leukemia ; 36(7): 1806-1817, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35568768

RESUMEN

Idelalisib targets PI3Kδ in the BCR pathway generating only a partial response in CLL patients, indicating that the leukemic cells may have evolved escape signals. Indeed, we detected increased activation of AKT accompanied by upregulation of MYC/BCL2 in post-therapy CLL cells from patients treated with idelalisib/ofatumumab. To unravel the mechanism of increased AKT-activation, we studied the impact of idelalisib on a CLL-derived cell line, MEC1, as a model. After an initial inhibition, AKT-activation level was restored in idelalisib-treated MEC1 cells in a time-dependent manner. As BCAP (B-cell adaptor for PI3K) and CD19 recruit PI3Kδ to activate AKT upon BCR-stimulation, we examined if idelalisib-treatment altered PI3Kδ-recruitment. Immunoprecipitation of BCAP/CD19 from idelalisib-treated MEC1 cells showed increased recruitment of PI3Kδ in association with PI3Kß, but not PI3Kα or PI3Kγ and that, targeting both PI3Kδ with PI3Kß inhibited AKT-reactivation. We detected similar, patient-specific recruitment pattern of PI3K-isoforms by BCAP/CD19 in post-idelalisib CLL cells with increased AKT-activation. Interestingly, a stronger inhibitory effect of idelalisib on P-AKT (T308) than S473 was discernible in idelalisib-treated cells despite increased recruitment of PI3Kδ/PI3Kß and accumulation of phosphatidylinositol-3,4,5-triphosphate; which could be attributed to reduced PDK1 activity. Thus, administration of isoform-specific inhibitors may prove more effective strategy for treating CLL patients.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Proteínas Proto-Oncogénicas c-akt , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Fosfatidilinositol 3-Quinasa Clase I , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Purinas/farmacología , Quinazolinonas/farmacología
3.
Am J Cancer Res ; 11(10): 5063-5075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765312

RESUMEN

Chondrosarcoma (CS) is the second most common skeletal malignancy in humans. High-grade CS is aggressive and extremely resistant to chemo- and radio-therapies. The lack of effective treatment options warrants the development of novel therapies. The evolutionarily conserved transcriptional co-factor JAB1 (also known as COPS5/CSN5) has emerged as a novel regulator of tumorigenesis. JAB1 overexpression occurs in many common cancers and is associated with poor prognosis. However, the role of JAB1 in CS pathogenesis was completely unknown. To study JAB1's function in CS, we performed shRNA knockdown (KD) of JAB1 in two high-grade human CS cell lines, SW1353 and Hs819.T, and observed significantly decreased proliferation and colony formations, and increased apoptosis in both CS cell lines upon JAB1-KD. Interestingly, we found that endogenous JAB1 interacted with endogenous SOX9, a potent oncogene and a master regulator of skeletogenesis, in chondrosarcoma cells, but not in primary chondrocytes. JAB1 also binds to the same SOX9-mediated chondrocyte-specific enhancer elements in CS cells. Furthermore, we found that a recently developed, novel, potent, and JAB1-specific small molecule inhibitor, CSN5i-3, can significantly increase apoptosis, drastically alter the activities of several signaling pathways, and modulates the expression of specific Cullin-ring-ligases (CRLs) in CS cells. Finally, our RNA-sequencing analysis in JAB1-KD CS cells identified a total of 2945 differentially expressed genes. Gene set enrichment analysis revealed that JAB1 regulates several essential pathways such as DNA damage response and cell cycle regulation. In conclusion, our study showed that JAB1 might regulate a distinct pro-tumorigenic regulatory network to promote chondrosarcoma pathogenesis.

4.
J Cell Physiol ; 236(8): 5686-5697, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33393086

RESUMEN

We previously reported that the evolutionary conserved transcriptional cofactor Jab1/Cops5 is critical for mouse chondrocyte differentiation by selectively repressing BMP signaling. In this study, we first uncovered that the endogenous Jab1 interacts with endogenous Smad1/5/8. Furthermore, although Jab1 did not directly interact with Acvr1 (Alk2), a key Type I BMP receptor, the interaction between endogenous Smad1/5/8 and Acvr1 was increased in Jab1-null chondrocytes. Thus, Jab1 might negatively regulate BMP signaling during chondrocyte differentiation in part by sequestering Smad1/5/8 away from Acvr1. Next, to identity Jab1 downstream targets in chondrocytes, we performed RNA-sequencing analysis of Jab1-null chondrocytes and discovered a total of 1993 differentially expressed genes. Gene set enrichment analysis revealed that key targets inhibited by Jab1 includes p53, BMP/transforming growth factor beta, and apoptosis pathways. We confirmed that endogenous Jab1 interacts with endogenous p53. There was significantly elevated p53 reporter activity, an enhanced expression of phospho-p53, and an increased expression of a key p53 downstream target, Puma, in Jab1-null chondrocytes. Moreover, treatments with a p53-specific inhibitor and/or a BMP Type I receptor-specific inhibitor reversed the elevated p53 and BMP signaling activities in Jab1-null chondrocytes and partially restored columnar growth plate structure in E17.5 Jab1-null mouse tibia explant cultures. Finally, we demonstrated that the chondrocyte-specific Jab1 overexpression in mice resulted in smaller-sized embryos with disorganized growth plates. In conclusion, our data showed that the delicate Jab1-mediated crosstalk between BMP and p53 pathways is crucial to maintain proper chondrocyte survival and differentiation. Moreover, the appropriate Jab1 expression level is essential for proper skeletal development.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Diferenciación Celular/fisiología , Condrocitos/metabolismo , Péptido Hidrolasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Condrogénesis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Factor de Crecimiento Transformador beta/metabolismo
5.
Bone ; 143: 115733, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33157284

RESUMEN

Jab1, also known as Csn5/Cops5, is a key subunit of the COP9 Signalosome, a highly conserved macromolecular complex. We previously reported that the conditional knockout of Jab1 in mouse limb buds and chondrocytes results in severely shortened limbs and neonatal lethal chondrodysplasia, respectively. In this study, we further investigated the specific role of Jab1 in osteoblast differentiation and postnatal bone growth by characterizing a novel mouse model, the Osx-cre; Jab1flox/flox conditional knockout (Jab1 cKO) mouse, in which Jab1 is deleted in osteoblast precursor cells. Jab1 cKO mutant mice appeared normal at birth, but developed progressive dwarfism. Inevitably, all mutant mice died prior to weaning age. The histological and micro-computed tomography analysis of mutant long bones revealed severely altered bone microarchitecture, with a significant reduction in trabecular thickness. Moreover, Jab1 cKO mouse tibiae had a drastic decrease in mineralization near the epiphyseal growth plates, and Jab1 cKO mice also developed spontaneous fractures near the tibiofibular junction. Additionally, our cell culture studies demonstrated that Jab1 deletion in osteoblast precursors led to decreased mineralization and a reduced response to TGFß and BMP signaling. Moreover, an unbiased reporter screen also identified decreased TGFß activity in Jab1-knockdown osteoblasts. Thus, Jab1 is necessary for proper osteoblast differentiation and postnatal bone growth, likely in part through its positive regulation of the TGFß and BMP signaling pathways in osteoblast progenitor cells.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Péptido Hidrolasas , Animales , Complejo del Señalosoma COP9 , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Osteogénesis , Microtomografía por Rayos X
6.
Oncogene ; 39(23): 4581-4591, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32390003

RESUMEN

Osteosarcoma (OS) is the most common primary bone cancer and ranks amongst the leading causes of cancer mortality in young adults. Jun activation domain-binding protein 1 (JAB1) is overexpressed in many cancers and has recently emerged as a novel target for cancer treatment. However, the role of JAB1 in osteosarcoma was virtually unknown. In this study, we demonstrate that JAB1-knockdown in malignant osteosarcoma cell lines significantly reduced their oncogenic properties, including proliferation, colony formation, and motility. We also performed RNA-sequencing analysis in JAB1-knockdown OS cells and identified 4110 genes that are significantly differentially expressed. This demonstrated for the first time that JAB1 regulates a large and specific transcriptome in cancer. We also found that JAB1 is overexpressed in human OS and correlates with a poor prognosis. Moreover, we generated a novel mouse model that overexpresses Jab1 specifically in osteoblasts upon a TP53 heterozygous sensitizing background. Interestingly, by 13 months of age, a significant proportion of these mice spontaneously developed conventional OS. Finally, we demonstrate that a novel, highly specific small molecule inhibitor of JAB1, CSN5i-3, reduces osteosarcoma cell viability, and has specific effects on the ubiquitin-proteasome system in OS. Thus, we show for the first time that the overexpression of JAB1 in vivo can result in accelerated spontaneous tumor formation in a p53-dependent manner. In summary, JAB1 might be a unique target for the treatment of osteosarcoma and other cancers.


Asunto(s)
Neoplasias Óseas/patología , Complejo del Señalosoma COP9/metabolismo , Carcinogénesis/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Osteosarcoma/patología , Péptido Hidrolasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Neoplasias Óseas/genética , Complejo del Señalosoma COP9/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Reparación del ADN/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Osteosarcoma/genética , Péptido Hidrolasas/genética
7.
Am J Transl Res ; 12(3): 1056-1069, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269734

RESUMEN

Sox9 is the master transcription factor essential for cartilage development and homeostasis. To investigate the specific role of Sox9 during chondrocyte hypertrophy, we generated a novel Col10a1-Sox9 transgenic mouse model, in which Sox9 is specifically expressed in hypertrophic chondrocytes driven by a well-characterized 10-kb Col10a1 promoter. These mice were viable and fertile, and appeared normal at birth. However, they developed dwarfism by ten weeks of age. The histological analysis of the growth plates from these transgenic mice demonstrated an abnormal growth plate architecture and a significantly reduced amount of trabecular bone and mineral content in the primary spongiosa. Real-time qPCR analysis revealed the reduced expression of Col10a1, and increased expressions of adipogenic differentiation markers in primary hypertrophic chondrocytes isolated from transgenic mice. Concomitantly, the transgenic mouse chondrocyte cultures had increased lipid droplet accumulation. Unexpectedly, we also observed an increased incidence of spontaneous osteoarthritis (OA) development in the transgenic mice by X-ray analysis, micro-computed tomography scanning, and histological examination of knee joints. The manifestation of OA in Col10a1-Sox9 transgenic mice began by six-months of age, and worsened by eleven-months of age. In conclusion, we provide strong evidence that the proper spatiotemporal expression of Sox9 is necessary for normal adult hypertrophic cartilage homeostasis, and that the aberrant expression of Sox9 might lead to spontaneous OA development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...