Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39211090

RESUMEN

Microglia are thought to originate exclusively from primitive macrophage progenitors in the yolk sac (YS) and to persist throughout life without much contribution from definitive hematopoiesis. Here, using lineage tracing, pharmacological manipulation, and RNA-sequencing, we elucidated the presence and characteristics of monocyte-derived macrophages (MDMs) in the brain parenchyma at baseline and during microglia repopulation, and defined the core transcriptional signatures of brain-engrafted MDMs. Lineage tracing mouse models revealed that MDMs transiently express CD206 during brain engraftment as CD206 + microglia precursors in the YS. We found that brain-engrafted MDMs exhibit transcriptional and epigenetic characteristics akin to meningeal macrophages, likely due to environmental imprinting within the meningeal space. Utilizing parabiosis and skull transplantation, we demonstrated that monocytes from both peripheral blood and skull bone marrow can repopulate microglia-depleted brains. Our results reveal the heterogeneous origins and cellular dynamics of brain parenchymal macrophages at baseline and in models of microglia depletion.

2.
Nature ; 627(8002): 165-173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326613

RESUMEN

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Asunto(s)
Aracnoides , Encéfalo , Duramadre , Animales , Humanos , Ratones , Aracnoides/anatomía & histología , Aracnoides/irrigación sanguínea , Aracnoides/inmunología , Aracnoides/metabolismo , Transporte Biológico , Encéfalo/anatomía & histología , Encéfalo/irrigación sanguínea , Encéfalo/inmunología , Encéfalo/metabolismo , Duramadre/anatomía & histología , Duramadre/irrigación sanguínea , Duramadre/inmunología , Duramadre/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Perfilación de la Expresión Génica , Imagen por Resonancia Magnética , Ratones Transgénicos , Espacio Subaracnoideo/anatomía & histología , Espacio Subaracnoideo/irrigación sanguínea , Espacio Subaracnoideo/inmunología , Espacio Subaracnoideo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Venas/metabolismo
3.
Cell Mol Immunol ; 20(11): 1290-1299, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37429945

RESUMEN

Recent research in neuroimmunology has revolutionized our understanding of the intricate interactions between the immune system and the central nervous system (CNS). The CNS, an "immune-privileged organ", is now known to be intimately connected to the immune system through different cell types and cytokines. While type 2 immune responses have traditionally been associated with allergy and parasitic infections, emerging evidence suggests that these responses also play a crucial role in CNS homeostasis and disease pathogenesis. Type 2 immunity encompasses a delicate interplay among stroma, Th2 cells, innate lymphoid type 2 cells (ILC2s), mast cells, basophils, and the cytokines interleukin (IL)-4, IL-5, IL-13, IL-25, TSLP and IL-33. In this review, we discuss the beneficial and detrimental roles of type 2 immune cells and cytokines in CNS injury and homeostasis, cognition, and diseases such as tumors, Alzheimer's disease and multiple sclerosis.


Asunto(s)
Hipersensibilidad , Inmunidad Innata , Humanos , Linfocitos , Citocinas/metabolismo , Encéfalo/metabolismo
4.
Nature ; 611(7936): 585-593, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36352225

RESUMEN

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.


Asunto(s)
Sistema Nervioso Central , Líquido Cefalorraquídeo , Macrófagos , Tejido Parenquimatoso , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Líquido Cefalorraquídeo/metabolismo , Macrófagos/fisiología , Meninges/citología , Reología , Proteínas de la Matriz Extracelular/metabolismo , Envejecimiento/metabolismo , Fagocitosis , Endocitosis , Interferón gamma/metabolismo , Tejido Parenquimatoso/citología , Humanos
5.
Nat Neurosci ; 25(5): 555-560, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35301477

RESUMEN

It remains unclear how immune cells from skull bone marrow niches are recruited to the meninges. Here we report that cerebrospinal fluid (CSF) accesses skull bone marrow via dura-skull channels, and CSF proteins signal onto diverse cell types within the niches. After spinal cord injury, CSF-borne cues promote myelopoiesis and egress of myeloid cells into meninges. This reveals a mechanism of CNS-to-bone-marrow communication via CSF that regulates CNS immune responses.


Asunto(s)
Médula Ósea , Cráneo , Médula Ósea/fisiología , Líquido Cefalorraquídeo , Cabeza , Meninges , Células Mieloides/metabolismo
7.
Science ; 373(6553)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34083447

RESUMEN

The meninges are a membranous structure enveloping the central nervous system (CNS) that host a rich repertoire of immune cells mediating CNS immune surveillance. Here, we report that the mouse meninges contain a pool of monocytes and neutrophils supplied not from the blood but by adjacent skull and vertebral bone marrow. Under pathological conditions, including spinal cord injury and neuroinflammation, CNS-infiltrating myeloid cells can originate from brain borders and display transcriptional signatures distinct from their blood-derived counterparts. Thus, CNS borders are populated by myeloid cells from adjacent bone marrow niches, strategically placed to supply innate immune cells under homeostatic and pathological conditions. These findings call for a reinterpretation of immune-cell infiltration into the CNS during injury and autoimmunity and may inform future therapeutic approaches that harness meningeal immune cells.


Asunto(s)
Células de la Médula Ósea/fisiología , Enfermedades del Sistema Nervioso Central/inmunología , Sistema Nervioso Central/inmunología , Meninges/inmunología , Células Mieloides/fisiología , Cráneo/anatomía & histología , Columna Vertebral/anatomía & histología , Animales , Médula Ósea/fisiología , Encéfalo/citología , Encéfalo/inmunología , Encéfalo/fisiología , Movimiento Celular , Sistema Nervioso Central/citología , Enfermedades del Sistema Nervioso Central/patología , Duramadre/citología , Duramadre/inmunología , Duramadre/fisiología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Homeostasis , Meninges/citología , Meninges/fisiología , Ratones , Monocitos/fisiología , Neutrófilos/fisiología , Médula Espinal/citología , Médula Espinal/inmunología , Médula Espinal/fisiología , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/patología
8.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33508229

RESUMEN

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Asunto(s)
Senos Craneales/inmunología , Senos Craneales/fisiología , Duramadre/inmunología , Duramadre/fisiología , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos/líquido cefalorraquídeo , Senescencia Celular , Quimiocina CXCL12/farmacología , Duramadre/irrigación sanguínea , Femenino , Homeostasis , Humanos , Inmunidad , Masculino , Ratones Endogámicos C57BL , Fenotipo , Células del Estroma/citología , Linfocitos T/citología
9.
Nat Immunol ; 21(11): 1421-1429, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32929273

RESUMEN

Interleukin (IL)-17a has been highly conserved during evolution of the vertebrate immune system and widely studied in contexts of infection and autoimmunity. Studies suggest that IL-17a promotes behavioral changes in experimental models of autism and aggregation behavior in worms. Here, through a cellular and molecular characterization of meningeal γδ17 T cells, we defined the nearest central nervous system-associated source of IL-17a under homeostasis. Meningeal γδ T cells express high levels of the chemokine receptor CXCR6 and seed meninges shortly after birth. Physiological release of IL-17a by these cells was correlated with anxiety-like behavior in mice and was partially dependent on T cell receptor engagement and commensal-derived signals. IL-17a receptor was expressed in cortical glutamatergic neurons under steady state and its genetic deletion decreased anxiety-like behavior in mice. Our findings suggest that IL-17a production by meningeal γδ17 T cells represents an evolutionary bridge between this conserved anti-pathogen molecule and survival behavioral traits in vertebrates.


Asunto(s)
Ansiedad/etiología , Ansiedad/metabolismo , Interleucina-17/metabolismo , Neuronas/inmunología , Neuronas/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Ansiedad/psicología , Conducta Animal , Proliferación Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Duramadre , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Interleucina-17/genética , Meninges/inmunología , Meninges/metabolismo , Ratones , Ratones Noqueados , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...