Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(7): 112785, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436901

RESUMEN

Peripheral inflammation has been linked to various neurodegenerative disorders, including Alzheimer's disease (AD). Here we perform bulk, single-cell, and spatial transcriptomics in APP/PS1 mice intranasally exposed to Staphylococcus aureus to determine how low-grade peripheral infection affects brain transcriptomics and AD-like pathology. Chronic exposure led to increased amyloid plaque burden and plaque-associated microglia, significantly affecting the transcription of brain barrier-associated cells, which resulted in barrier leakage. We reveal cell-type- and spatial-specific transcriptional changes related to brain barrier function and neuroinflammation during the acute infection. Both acute and chronic exposure led to brain macrophage-associated responses and detrimental effects in neuronal transcriptomics. Finally, we identify unique transcriptional responses at the amyloid plaque niches following acute infection characterized by higher disease-associated microglia gene expression and a larger effect on astrocytic or macrophage-associated genes, which could facilitate amyloid and related pathologies. Our findings provide important insights into the mechanisms linking peripheral inflammation to AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Placa Amiloide/metabolismo , Transcriptoma/genética , Encéfalo/metabolismo , Microglía/metabolismo , Inflamación/patología , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
2.
Molecules ; 27(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36296527

RESUMEN

The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Melatonina , Humanos , SARS-CoV-2 , Melatonina/farmacología , Melatonina/uso terapéutico , Antioxidantes , Antivirales/farmacología , Antivirales/uso terapéutico
3.
Biomedicines ; 10(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35625764

RESUMEN

Alzheimer's disease (AD) is one of the most prevailing neurodegenerative diseases in the world, which is characterized by memory dysfunction and the formation of tau and amyloid ß (Aß) aggregates in multiple brain regions, including the hippocampus and cortex. The formation of senile plaques involving tau hyperphosphorylation, fibrillar Aß, and neurofibrillary tangles (NFTs) is used as a pathological marker of AD and eventually produces aggregation or misfolded protein. Importantly, it has been found that the failure to degrade these aggregate-prone proteins leads to pathological consequences, such as synaptic impairment, cytotoxicity, neuronal atrophy, and memory deficits associated with AD. Recently, increasing evidence has suggested that the autophagy pathway plays a role as a central cellular protection system to prevent the toxicity induced by aggregation or misfolded proteins. Moreover, it has also been revealed that AD-related protein aggresomes could be selectively degraded by autophagosome and lysosomal fusion through the autophagy pathway, which is known as aggrephagy. Therefore, the regulation of autophagy serve as a useful approach to modulate the formation of aggresomes associated with AD. This review focuses on the recent improvements in the application of natural compounds and small molecules as a potential therapeutic approach for AD prevention and treatment via aggrephagy.

4.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216486

RESUMEN

The passage number of cells refers to the number of subculturing processes that the cells have undergone. The effect of passage number on morphological and phenotypical characteristics of cells is of great importance. Advanced glycation end products have also been associated with cell functionality and characteristics. Murine monocyte RAW 264.7 cells differentiate into osteoclasts upon receptor activation caused by nuclear factor-kappa-Β ligand (RANKL) treatment. This study aims to identify the role of passage number on intracellular advanced glycation end products (AGEs) formation and osteoclastogenic differentiation of RAW 264.7 cells. Western blotting was performed to check intracellular AGE formation along with fluorometric analysis using a microplate reader. Tartrate-resistant acid phosphatase (TRAP) staining was performed to check osteoclastogenic differentiation, and qPCR was realized to check the responsible mRNA expression. Immunofluorescence was used to check the morphological changes. Intracellular AGE formation was increased with passaging, and the higher passage number inhibited multinucleated osteoclastogenic differentiation. Osteoclastogenic gene expression also showed a reducing trend in higher passages, along with a significant reduction in F-actin ring size and number. Lower passages should be used to avoid the effects of cell subculturing in in vitro osteoclastogenesis study using RAW 264.7 cells.


Asunto(s)
Regulación hacia Abajo/fisiología , Productos Finales de Glicación Avanzada/metabolismo , Osteogénesis/fisiología , Ligando RANK/metabolismo , Actinas/metabolismo , Animales , Resorción Ósea/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Ratones , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Células RAW 264.7 , Transducción de Señal/fisiología , Fosfatasa Ácida Tartratorresistente/metabolismo
5.
Oxid Med Cell Longev ; 2021: 9974890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336128

RESUMEN

The biological and therapeutic properties of seaweeds have already been well known. Several studies showed that among the various natural marine sources of antioxidants, seaweeds have become a potential source of antioxidants because of their bioactive compounds. Most of the metabolic diseases are caused by oxidative stress. It is very well known that antioxidants have a pivotal role in the treatment of those diseases. Recent researches have revealed the potential activity of seaweeds as complementary medicine, which have therapeutic properties for health and disease management. Among the seaweeds, brown seaweeds (Phaeophyta) and their derived bioactive substances showed excellent antioxidant properties than other seaweeds. This review focuses on brown seaweeds and their derived major bioactive compounds such as sulfated polysaccharide, polyphenol, carotenoid, and sterol antioxidant effects and molecular mechanisms in the case of the oxidative stress-originated disease. Antioxidants have a potential role in the modification of stress-induced signaling pathways along with the activation of the oxidative defensive pathways. This review would help to provide the basis for further studies to researchers on the potential antioxidant role in the field of medical health care and future drug development.


Asunto(s)
Antioxidantes/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Algas Marinas/química , Antioxidantes/farmacología , Humanos
6.
Biomedicines ; 10(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35052734

RESUMEN

OBJECTIVE: Elevated levels of serum Nε-carboxymethyllysine (CML), a well-known advanced glycation end-product (AGE), were observed in patients with inflammation or osteoporosis. Astaxanthin was reported to possess anti-inflammatory and antioxidant effects. In the present study, we investigated the effects of commercially available dietary supplement AstaReal ACTR (ASR) capsule content as astaxanthin on CML-HSA-induced inflammatory and receptor activator of nuclear factor-kappa-Β ligand (RANKL)-induced osteoclastogenic gene expression. METHODS: RAW 264.7 murine macrophage cells were stimulated with CML-HSA to trigger inflammatory gene expression and treated with either a vehicle control or varied concentrations of astaxanthin. Inflammatory gene expression was measured using an enzyme-linked immunosorbent assay (ELISA) or qPCR. We triggered osteoclastogenesis using RANKL, and osteoclastogenic gene expression was measured through tartrate-resistant acid phosphatase (TRAP) activity, staining, immunofluorescence, and qPCR analyses. RESULTS: CML-HSA showed a stimulatory effect on inflammatory gene expression, and astaxanthin reduced the expression by at least two-fold. The levels of autoinflammatory gene expression were reduced by astaxanthin. The RANKL-induced osteoclastogenesis was significantly inhibited by astaxanthin, with reductions in the activation of nuclear factor-κB (NF-κB), the expression of NFATc1 (nuclear factor of activated T cells 1), multinucleated cell formation, and the expression of mature osteoclast marker genes. CONCLUSION: Astaxanthin has potential as a remedy for CML-HSA-induced inflammation and RANKL-induced excessive bone loss.

7.
Pak J Biol Sci ; 16(13): 617-23, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24505984

RESUMEN

The present study was carried out to explore baker's yeasts strains from sugarcane juice to assess its potential in laboratory scale production of breads. Collected juice samples were processed for isolation and identification of yeast strains based on standard cultural, morphological and biochemical characteristics. Among the six isolated strains, four (designated as S1, S2, S5 and S6) were identified as Saccharomyces cerevisiae and the rests (designated S3 and S4) were as S. rouxii. When assessing their CO2 production rates as a measure of their baking potential, S6 was found to produce maximum amount of gas (226.67 mm3 mL(-1)) in sucrose broth, whereas gas produced by S2, S1 and S5 were relatively insignificant (170, 136.67 and 86.67 mm3 mL(-1), respectively). No strain was found to produce undesirable H2S gas responsible for off-flavor. Besides, effects of different physicochemical parameters (e.g., pH, temperature, substrate concentration, incubation period, agitation etc.) on the production of yeast cell-mass were studied. Yield of cell mass was indirectly measured by spectrophotometric method at 550 nm. All the test isolates were found to produce maximum cell mass at a pH range of 4.0 to 5.0 in 2 to 4% molasses broth at 30 degrees C after 4 days of incubation. In the laboratory scale production of bread using composite flour, Isolate-S6 formed significant characteristic texture. Considering overall characteristics, Isolate- S6 was found to be satisfactorily potent for baking purpose.


Asunto(s)
Pan/microbiología , Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , Saccharum/microbiología , Dióxido de Carbono/metabolismo , Concentración de Iones de Hidrógeno , Melaza , Sacarosa/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA