Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37873278

RESUMEN

Itch is a protective sensation that drives scratching. Although specific cell types have been proposed to underlie itch, the neural circuit basis for itch remains unclear. Here, we used two-photon Ca2+ imaging of the dorsal horn to visualize the neuronal populations that are activated by itch-inducing agents. We identify a convergent population of spinal neurons that is defined by the expression of GRPR. Moreover, we discover that itch is conveyed to the brain via GRPR-expressing spinal output neurons that target the lateral parabrachial nucleus. Further, we show that nalfurafine, a clinically effective kappa opioid receptor agonist, relieves itch by inhibiting GRPR spinoparabrachial neurons. Finally, we demonstrate that a subset of GRPR spinal neurons show persistent, cell-intrinsic Ca2+ oscillations. These experiments provide the first population-level view of the spinal neurons that respond to pruritic stimuli, pinpoint the output neurons that convey itch to the brain, and identify the cellular target of kappa opioid receptor agonists for the inhibition of itch.

2.
Exp Neurol ; 370: 114552, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37793538

RESUMEN

Inherited painless neuropathies arise due to genetic insults that either block the normal signaling of or destroy the sensory afferent neurons in the dorsal root ganglion (DRG) responsible for transducing noxious stimuli. Complete loss of these neurons leads to profound insensitivity to all sensory modalities including pain. Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare genetic neuropathy characterized by a progressive distal early onset sensory loss. This syndrome is caused by autosomal recessive mutations in the with-no-lysine protein kinase 1 (WNK1) serine-threonine kinase gene. Of interest, disease-associated mutations are found in the large exon, termed "HSN2," which encodes a 498 amino acid domain C-terminal to the kinase domain. These mutations lead to truncation of the HSN2-containing proteins through the addition of an early stop codon (nonsense mutation) leading to loss of the C-terminal domains of this large protein. The present study evaluates the transcripts, gene structure, and protein structure of HSN2-containing WNK1 splice variants in DRG and spinal cord in order to establish the basal expression patterns of WNK1 and HSN2-containing WNK1 splice variants using multiplex fluorescent situ hybridization. We hypothesized that these transcripts would be enriched in pain-sensing DRG neurons, and, potentially, that enrichment in nociceptive neurons was responsible for the painless phenotypes observed. However, our in-depth analyses revealed that the HSN2-WNK1 splice variants were ubiquitously expressed but were not enriched in tachykinin 1-expressing C-fiber neurons, a class of neurons with a highly nociceptive character. We subsequently identified other subpopulations of DRG neurons with higher levels of HSN2-WNK1 expression, including mechanosensory large fibers. These data are inconsistent with the hypothesis that this transcript is enriched in nociceptive fibers, and instead suggest it may be related to general axon maintenance, or that nociceptive fibers are more sensitive to the genetic insult. These findings clarify the molecular and cellular expression pattern of this painless neuropathy gene in human tissue.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Ganglios Espinales/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Péptidos y Proteínas de Señalización Intracelular , Lisina/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Dolor
3.
Front Mol Neurosci ; 15: 926596, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875671

RESUMEN

Primary afferent neurons of the dorsal root ganglia (DRG) transduce peripheral nociceptive signals and transmit them to the spinal cord. These neurons also mediate analgesic control of the nociceptive inputs, particularly through the µ-opioid receptor (encoded by Oprm1). While opioid receptors are found throughout the neuraxis and in the spinal cord tissue itself, intrathecal administration of µ-opioid agonists also acts directly on nociceptive nerve terminals in the dorsal spinal cord resulting in marked analgesia. Additionally, selective chemoaxotomy of cells expressing the TRPV1 channel, a nonselective calcium-permeable ion channel that transduces thermal and inflammatory pain, yields profound pain relief in rats, canines, and humans. However, the relationship between Oprm1 and Trpv1 expressing DRG neurons has not been precisely determined. The present study examines rat DRG neurons using high resolution multiplex fluorescent in situ hybridization to visualize molecular co-expression. Neurons positive for Trpv1 exhibited varying levels of expression for Trpv1 and co-expression of other excitatory and inhibitory ion channels or receptors. A subpopulation of densely labeled Trpv1+ neurons did not co-express Oprm1. In contrast, a population of less densely labeled Trpv1+ neurons did co-express Oprm1. This finding suggests that the medium/low Trpv1 expressing neurons represent a specific set of DRG neurons subserving the opponent processes of both transducing and inhibiting nociceptive inputs. Additionally, the medium/low Trpv1 expressing neurons co-expressed other markers implicated in pathological pain states, such as Trpa1 and Trpm8, which are involved in chemical nociception and cold allodynia, respectively, as well as Scn11a, whose mutations are implicated in familial episodic pain. Conversely, none of the Trpv1+ neurons co-expressed Spp1, which codes for osteopontin, a marker for large diameter proprioceptive neurons, validating that nociception and proprioception are governed by separate neuronal populations. Our findings support the hypothesis that the population of Trpv1 and Oprm1 coexpressing neurons may explain the remarkable efficacy of opioid drugs administered at the level of the DRG-spinal synapse, and that this subpopulation of Trpv1+ neurons is responsible for registering tissue damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA