Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metabolites ; 10(4)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244413

RESUMEN

A novel series of imidazo[2,1-b]thiazole-sulfonyl piperazine conjugates (9aa-ee) has been synthesized and evaluated for carbonic anhydrase (CA, EC 4.2.1.1) inhibitory potency against four isoforms: The cytosolic isozyme hCA I, II and trans-membrane tumor-associated isoform hCA IX and hCA XII, taking acetazolamide (AAZ) as standard drug, using a stopped flow CO2 hydrase assay. The results revealed that most of the compounds showed selective activity against hCA II whereas none of them were active against hCA I, IX, XII (Ki > 100 µM). The physiologically dominant cytosolic isoform hCA II was inhibited by these molecules with inhibition constants in the range of 57.7-98.2 µM. This new derivative, thus, selectively inhibits hCA II over the hCA I, IX, XII isoforms, which may be used for further understanding the physiological roles of some of these isoforms in various pathologies.

2.
RSC Med Chem ; 11(11): 1295-1302, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34095841

RESUMEN

A library of substituted (1-(benzyl)-1H-1,2,3-triazol-4-yl)(piperazin-1-yl)methanone derivatives were designed, synthesized and screened for their in vitro cytotoxic activity against BT-474, HeLa, MCF-7, NCI-H460 and HaCaT cells by employing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Among all the synthesized analogues, compound 10ec displayed the highest cytotoxicity with the IC50 value of 0.99 ± 0.01 µM towards BT-474 cancer cell line. The target compound (10ec) was also evaluated for its tubulin polymerization inhibition study. Detailed biological studies such as acridine orange/ethidium bromide (AO/EB), DAPI and annexin V-FITC/propidium iodide staining assay suggested that compound 10ec induced the apoptosis of BT-474 cells. The clonogenic assay revealed that the inhibition of colony formation in BT-474 cells by 10ec in concentration-dependent manner. Moreover, the flow cytometric analysis revealed that 10ec induced apoptosis via cell cycle arrest at the sub-G1 and G2/M phase. In silico studies of sulfonyl piperazine-integrated triazole conjugates unveil that they possess drug-like properties. According to the molecular modelling studies, compound 10ec binds to the colchicine binding site of the tubulin.

3.
Beilstein J Org Chem ; 15: 1864-1871, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467608

RESUMEN

An efficient, simple, and metal-free synthetic approach for the N- and O-benzoylation of various amines/benzyl alcohols with pyridinium salts of phenacyl bromides is demonstrated to generate the corresponding amides and esters. This protocol facilitates the oxidative cleavage of a C-C bond followed by formation of a new C-N/C-O bond in the presence of K2CO3. Various pyridinium salts of phenacyl bromides can be readily transformed into a variety of amides and esters which is an alternative method for the conventional amidation and esterification in organic synthesis. High functional group tolerance, broad substrate scope and operational simplicity are the prominent advantages of the current protocol.

4.
Curr Med Chem ; 26(40): 7212-7280, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29852860

RESUMEN

BACKGROUND: Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION: This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Neoplasias/tratamiento farmacológico , Zinc/farmacología , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/química , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , Zinc/química
5.
Org Lett ; 20(12): 3639-3642, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29874092

RESUMEN

A novel efficient one-pot regioselective ring-expansion reaction of isatins with in situ generated α-aryl/heteroaryldiazomethanes for the construction of viridicatin alkaloids has been described under metal-free conditions. The utility of this protocol is further demonstrated in the synthesis of naturally occurring viridicatin, viridicatol, and substituted 3- O-methyl viridicatin and their scale up.

6.
Org Biomol Chem ; 15(32): 6837-6853, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28782777

RESUMEN

An operationally facile and high yielding one-pot, three-component protocol has been developed for the preparation of selectively trans-2,3-dihydrofuro[3,2-c]coumarins and trans-1,2-dihydrobenzo[h]furo[3,2-c]quinolinones. This protocol proceeds through a domino Knoevenagel condensation, a Michael addition followed by intramolecular SN2 cyclisation. All the synthesized compounds have been evaluated for their in vitro cytotoxic activity against selected human cancer cell lines. Interestingly, most of the compounds have exhibited considerable cytotoxicity with IC50 values <10 µM in all the tested cell lines. Moreover, these compounds showed higher activity against MCF-7 (breast cancer) cell lines compared to other tested cell lines. Compounds 1g and 1r displayed significant cytotoxicity against all four tested cell lines. Cytotoxicity studies indicated that the toxicity of the synthesized compounds was considerably higher in tumor cells compared to normal cells. The structure-activity relationship studies revealed that the activating groups in these compounds preferably improved the activity compared to the deactivating groups. For a better understanding of the mechanism of action of these compounds, we performed the binding studies with calf thymus DNA (CT-DNA). Both molecular docking studies as well as biophysical studies indicate that these compounds may possess DNA binding affinity through intercalation. Through photocleavage studies, it is evident that they have the potential to cleave pBR322 plasmid DNA strands in a concentration and time dependent manner. In addition, compounds 1g and 1r showed significant topoisomerase II inhibitory activities. Moreover, an in silico study of these synthesized compounds revealed that they possess drug-like properties.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Cumarinas/síntesis química , Cumarinas/farmacología , ADN/química , Quinolonas/farmacología , Animales , Antineoplásicos/química , Bovinos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cumarinas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Células 3T3 NIH , Quinolonas/síntesis química , Quinolonas/química , Estereoisomerismo , Relación Estructura-Actividad
7.
Org Biomol Chem ; 13(32): 8652-62, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26099113

RESUMEN

Iodobenzene diacetate was employed as a mild and efficient reagent for one-pot oxidative decarboxylation of tetrahydro-ß-carboline acids and dehydrogenation of tetrahydro-ß-carbolines to access the corresponding aromatic ß-carbolines. To the best of our knowledge this is the first synthesis of ß-carbolines via a one-pot oxidative decarboxylation at ambient temperature. The utility of this protocol has been demonstrated in the synthesis of ß-carboline alkaloids norharmane (2o), harmane (2p), eudistomin U (9) and eudistomin I (12).


Asunto(s)
Acetatos/química , Carbolinas/química , Carbolinas/síntesis química , Harmina/análogos & derivados , Yodobencenos/química , Descarboxilación , Harmina/síntesis química , Harmina/química , Estructura Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...