Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(1): 161-172, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177302

RESUMEN

Phages can use a small-molecule communication arbitrium system to coordinate lysis-lysogeny decisions, but the underlying mechanism remains unknown. Here we determined that the arbitrium system in Bacillus subtilis phage phi3T modulates the bacterial toxin-antitoxin system MazE-MazF to regulate the phage life cycle. We show that phi3T expresses AimX and YosL, which bind to and inactivate MazF. AimX also inhibits the function of phi3T_93, a protein that promotes lysogeny by binding to MazE and releasing MazF. Overall, these mutually exclusive interactions promote the lytic cycle of the phage. After several rounds of infection, the phage-encoded AimP peptide accumulates intracellularly and inactivates the phage antiterminator AimR, a process that eliminates aimX expression from the aimP promoter. Therefore, when AimP increases, MazF activity promotes reversion back to lysogeny, since AimX is absent. Altogether, our study reveals the evolutionary strategy used by arbitrium to control lysis-lysogeny by domesticating and fine-tuning a phage-defence mechanism.


Asunto(s)
Fagos de Bacillus , Lisogenia , Fagos de Bacillus/fisiología , Péptidos/metabolismo , Muerte Celular
2.
Cell Host Microbe ; 31(12): 2023-2037.e8, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38035880

RESUMEN

Arbitrium-coding phages use peptides to communicate and coordinate the decision between lysis and lysogeny. However, the mechanism by which these phages establish lysogeny remains unknown. Here, focusing on the SPbeta phage family's model phages phi3T and SPß, we report that a six-gene operon called the "SPbeta phages repressor operon" (sro) expresses not one but two master repressors, SroE and SroF, the latter of which folds like a classical phage integrase. To promote lysogeny, these repressors bind to multiple sites in the phage genome. SroD serves as an auxiliary repressor that, with SroEF, forms the repression module necessary for lysogeny establishment and maintenance. Additionally, the proteins SroABC within the operon are proposed to constitute the transducer module, connecting the arbitrium communication system to the activity of the repression module. Overall, this research sheds light on the intricate and specialized repression system employed by arbitrium SPß-like phages in making lysis-lysogeny decisions.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Lisogenia , Péptidos/metabolismo
3.
Nucleic Acids Res ; 48(6): 3379-3394, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083668

RESUMEN

Synthetic biology has advanced from the setup of basic genetic devices to the design of increasingly complex gene circuits to provide organisms with new functions. While many bacterial, fungal and mammalian unicellular chassis have been extensively engineered, this progress has been delayed in plants due to the lack of reliable DNA parts and devices that enable precise control over these new synthetic functions. In particular, memory switches based on DNA site-specific recombination have been the tool of choice to build long-term and stable synthetic memory in other organisms, because they enable a shift between two alternative states registering the information at the DNA level. Here we report a memory switch for whole plants based on the bacteriophage ϕC31 site-specific integrase. The switch was built as a modular device made of standard DNA parts, designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally operated by action of the ϕC31 integrase (Int), and its recombination directionality factor (RDF). The kinetics, memory, and reversibility of the switch were extensively characterized in Nicotiana benthamiana plants.


Asunto(s)
ADN/genética , Nicotiana/genética , Siphoviridae/genética , Biología Sintética , Escherichia coli/genética , Integrasas/genética , Cinética , Recombinación Genética/genética , Nicotiana/virología , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA