Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Hum Genet ; 32(1): 52-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37880421

RESUMEN

Lissencephaly (LIS) is a malformation of cortical development due to deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. Thirty-one LIS-associated genes have been previously described. Recently, biallelic pathogenic variants in CRADD and PIDD1, have associated with LIS impacting the previously established role of the PIDDosome in activating caspase-2. In this report, we describe biallelic truncating variants in CASP2, another subunit of PIDDosome complex. Seven patients from five independent families presenting with a neurodevelopmental phenotype were identified through GeneMatcher-facilitated international collaborations. Exome sequencing analysis was carried out and revealed two distinct novel homozygous (NM_032982.4:c.1156delT (p.Tyr386ThrfsTer25), and c.1174 C > T (p.Gln392Ter)) and compound heterozygous variants (c.[130 C > T];[876 + 1 G > T] p.[Arg44Ter];[?]) in CASP2 segregating within the families in a manner compatible with an autosomal recessive pattern. RNA studies of the c.876 + 1 G > T variant indicated usage of two cryptic splice donor sites, each introducing a premature stop codon. All patients from whom brain MRIs were available had a typical fronto-temporal LIS and pachygyria, remarkably resembling the CRADD and PIDD1-related neuroimaging findings. Other findings included developmental delay, attention deficit hyperactivity disorder, hypotonia, seizure, poor social skills, and autistic traits. In summary, we present patients with CASP2-related ID, anterior-predominant LIS, and pachygyria similar to previously reported patients with CRADD and PIDD1-related disorders, expanding the genetic spectrum of LIS and lending support that each component of the PIDDosome complex is critical for normal development of the human cerebral cortex and brain function.


Asunto(s)
Lisencefalia , Trastornos del Neurodesarrollo , Humanos , Caspasa 2/genética , Lisencefalia/diagnóstico por imagen , Lisencefalia/genética , Alelos , Trastornos del Neurodesarrollo/genética , Codón sin Sentido , Fenotipo , Cisteína Endopeptidasas/genética
2.
Mol Syndromol ; 14(6): 485-492, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058760

RESUMEN

Introduction: Hereditary forms of intellectual disability (ID), an estimated prevalence ranging between 1% and 3% in the general population, are among the most important problems in health care. Especially, autosomal-recessive ID has a very heterogeneous molecular basis and a lack of specific phenotypic features. Methods: Here, we report on two unrelated patients with autosomal-recessive ID, microcephaly, and autistic features and review the patients with TRAPPC9-related ID. Whole-exome sequencing and array CGH were performed for molecular diagnosis of the patients. Results: The first case has a microdeletion on chromosome 8q24.23-q24.3 region which is 1.7 Mb in length and includes the last 5 exons of TRAPPC9, and c.3435delG [p.Thr1146Profs*8] deletion. The second case has a homozygous missense c.623A>C (p.His208Pro) variant in TRAPPC9 which is detected by means of whole-exome sequencing study of the proband. We also reviewed the clinical findings and mutation spectrum of all patients with TRAPPC9-related ID reported so far. Conclusions: Our study showed that the most consistent clinical findings for TRAPPC9-related ID are ID, microcephaly, and some structural brain MRI abnormalities. The mutations in the TRAPPC9 are scattered throughout all exons of TRAPPC9 indicating there is no hot spot mutation region in this gene.

3.
Am J Med Genet C Semin Med Genet ; 193(2): 193-197, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37186482

RESUMEN

Bone marrow failure type 3 (BMFS3) (MIM:617052) is a subtype of inherited bone marrow failure syndromes (IBMFS) caused by homozygous pathogenic variants in DNAJC21. It was first defined in 2016, and to date, 19 patients have been reported. Here we report the first adult patient; a 20-year-old female with a novel frameshift variant in DNAJC21 presents with thrombocytopenia, dysmorphic findings, and ovarian agenesis. Our patient expands the clinical spectrum to the milder end and suggests that DNAJC21-related disorders can have relatively mild presentations. Investigation of DNAJC21 variants in both childhood and adult patients with persistent, non-progressive thrombocytopenia will allow to broaden the gene-related phenotypic and genotypic spectrum and elucidate the pathophysiology. Therefore, we encourage revisiting undiagnosed patients to offer whole exome sequencing (WES) in adulthood.


Asunto(s)
Trombocitopenia , Humanos , Femenino , Adulto Joven , Niño , Adulto , Genotipo , Secuenciación del Exoma , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Proteínas del Choque Térmico HSP40/genética
4.
Intractable Rare Dis Res ; 11(4): 219-221, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36457583

RESUMEN

Potassium voltage-gated channel subfamily B member 1 (KCNB1) encodes Kv2.1 potassium channel. KCNB1 mutations are known to cause global developmental delay, behavioral disorders, and various epilepsies. Most variants occur de novo and are rarely inherited. Here, we report a 14-year-old male patient who was admitted to our clinic with seizures, developmental delay history, and intellectual disability. Brain magnetic resonance image (MRI) was normal and electroencephalogram (EEG) showed spike and sharp-wave complexes emerging in the left hemisphere parietooccipital areas, which were paroxysmally generalized. We performed whole exome sequence analysis (WES) and identified a heterozygous frameshift mutation c.522delA in exon 1 of KCNB1 (NM_004975.4) predicting a premature stop codon p.Lys174Asnfs*20 in the proband. Sanger sequencing confirmed the heterozygous c.522delA mutation in the proband and his mother who also had epilepsy and learning difficulties. His 45 year old mother had used antiepileptic drugs for 9 years after a seizure episode at 12 years old. Also, his mother's uncle's son is nonverbal and has developmental delay and epilepsy. Our study shows that frameshift mutation cytoplasmic domain of KCNB1 gene can cause intrafamilial phenotypic variability and relatively mild clinical findings in these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA