Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(25): 12060-12070, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38813765

RESUMEN

To date, metal oxide catalysts have not been explored as cathode materials for robust and high-performance single-compartment H2O2 fuel cells due to significant non-electrochemical disproportionation losses of H2O2 on many metal oxide surfaces. Here, for the first time, we demonstrate an acidic peroxide fuel cell with antimony doped tin oxide as the cathode and widely used Ni foam as the anode material. Our constructed peroxide fuel cell records a superior open circuit potential of nearly 0.82 V and a maximum power density of 0.32 mW cm-2 with high operational stability. The fuel cell performance is further improved by increasing the ionic strength of the electrolyte with the addition of 1 M NaCl, resulting in an increased maximum power density value of 1.1 mW cm-2.

2.
ACS Appl Bio Mater ; 7(4): 2460-2471, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38517347

RESUMEN

Here, we demonstrate a label-free dual optical response strategy for the detection of cytochrome c (Cyt c) with ultrahigh sensitivity using highly luminescent lanthanides containing inorganic-organic hybrid nanotubular sensor arrays. These sensor arrays are formed by the sequential incorporation of the photosensitizers 2,3-dihydroxynaphthalene (DHN) or 1,10-phenanthroline (Phen), and trivalent lanthanide terbium ions (Tb3+) into sodium lithocholate (NaLC) nanotube templates. Our sensing platform relies on the detection and quantification of Cyt c in solution by providing dual photoluminescence quenching responses from the nanotubular hybrid arrays in the presence of Cyt c. The large quenching of the sensitized Tb3+ emission within the DHN/Phen-Tb3+-NaLC nanotubular sensor arrays caused by the strong binding of the photosensitizers to Cyt c provides an important signal response for the selective detection of Cyt c. This long-lived lanthanide emission response-based sensing strategy can be highly advantageous for the detection of Cyt c in a cellular environment eliminating background fluorescence and scattering signals through time-gated measurements. The DHN containing nanotubular sensor arrays (DHN-NaLC and DHN-Tb3+-NaLC) provide an additional quenching response characterized by a unique spectral valley splitting with quantized quenching dip on the DHN fluorescence emission. This spectral quenching dip resulting from efficient FRET between the protein bound DHN photosensitizer and the heme group of Cyt c serves as an important means for specific detection and quantification of Cyt c in the concentration range of 0-30 µM with a low detection limit of around 20 nM.


Asunto(s)
Elementos de la Serie de los Lantanoides , Elementos de la Serie de los Lantanoides/química , Citocromos c , Fármacos Fotosensibilizantes , Terbio/química , Luminiscencia
3.
J Phys Chem B ; 127(10): 2198-2213, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36861956

RESUMEN

Amyloid aggregation of protein is linked to many neurodegenerative diseases. Identification of small molecules capable of targeting amyloidogenic proteins has gained significant importance. Introduction of hydrophobic and hydrogen bonding interactions through site-specific binding of small molecular ligand to protein can effectively modulate the protein aggregation pathway. Here, we investigate the possible roles of three different bile acids, cholic acid (CA), taurocholic acid (TCA), and lithocholic acid (LCA) with varying hydrophobic and hydrogen bonding properties in inhibiting protein fibrillation. Bile acids are an important class of steroid compounds that are synthesized in the liver from cholesterol. Increasing evidence suggests that altered taurine transport, cholesterol metabolism, and bile acid synthesis have strong implications in Alzheimer's disease. We find that the hydrophilic bile acids, CA and TCA (taurine conjugated form of CA), are substantially more efficient inhibitors of lysozyme fibrillation than the most hydrophobic secondary bile acid LCA. Although LCA binds more strongly with the protein and masks the Trp residues more prominently through hydrophobic interactions, the lesser extent of hydrogen bonding interactions at the active site has made LCA a relatively weaker inhibitor of HEWL aggregation than CA and TCA. The introduction of a greater number of hydrogen bonding channels by CA and TCA with several key amino acid residues which are prone to form oligomers and fibrils has weakened the protein's internal hydrogen bonding capabilities for undergoing amyloid aggregation.


Asunto(s)
Ácidos y Sales Biliares , Muramidasa , Muramidasa/química , Clara de Huevo , Amiloide/química , Proteínas Amiloidogénicas , Taurina
4.
ACS Omega ; 7(19): 16593-16604, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35601299

RESUMEN

The formation of nanobiohybrids through the immobilization of enzymes on functional nanomaterials has opened up exciting research opportunities at the nanobiointerfaces. These systems hold great promise for a wide range of applications in biosensing, biocatalytic, and biomedical fields. Here, we report the formation of a hybrid nanobiocatalytic system through the adsorption of cytochrome c (Cyt c) on pluronic triblock copolymer, P123 (PEO-b-PPO-b-PEO), stabilized MoS2 nanosheets. The use of pluronic polymer has helped not only to greatly stabilize the exfoliated MoS2 nanosheets but also to allow easy adsorption of Cyt c on the nanosheets without major structural changes due to its excellent biocompatibility and soft protein-binding property. By comparing the catalytic activity of the Cyt c-MoS2 nanobiohybrid with that of the free Cyt c and as-prepared MoS2 nanosheets, we have demonstrated the active role of the nanobiointeractions in enhancing the catalytic activity of the hybrid. Slight structural perturbation at the active site of the Cyt c upon adsorption on MoS2 has primarily facilitated the peroxidase activity of the Cyt c. As the MoS2 nanosheets and the native Cyt c individually exhibit weaker intrinsic peroxidase activities, their mutual modulation at the nanobiointerface has made the Cyt c-MoS2 a novel nanobiocatalyst with superior activity.

5.
J Phys Chem B ; 125(27): 7447-7455, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34196554

RESUMEN

Strongly coupled dye aggregates with tailored exciton properties may find their use in developing artificial light-harvesting and optoelectronic devices. Here, we report the control of tubular pseudoisocyanine (PIC) dye J- and H-aggregate formation with tunable exciton fluorescence using lithocholic acid (LCA) as a template. The LCA-templated PIC J-aggregate nanotubes formed at a higher LCA/PIC molar ratio (≥5:1) exhibit a sharp, red-shifted absorption band (at 555 nm), intense fluorescence (at 565 nm), and shorter lifetime (200 ps), all indicating their strong superradiance properties. In contrast, the H-aggregate nanotubes formed at a lower LCA/PIC molar ratio (2:1) exhibit a significantly blue-shifted absorption band (at 420 nm) and highly red-shifted fluorescence emission (at 600 nm) with enhanced lifetime (4.40 ns). The controlled switching of the optical properties of the PIC dye aggregates achieved by controlling the LCA/PIC molar ratio could serve as an important guideline for the design of organic photo-functional materials.


Asunto(s)
Nanotubos , Electrónica , Espectrometría de Fluorescencia
6.
Bioconjug Chem ; 30(7): 1870-1879, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30985113

RESUMEN

Strongly coupled molecular dye aggregates have unique optoelectronic properties that often resemble those of light harvesting complexes found in Nature. The exciton dynamics in coupled dye aggregates could enhance the long-range transfer of optical excitation energy with high efficiency. In principle, dye aggregates could serve as important components in molecular-scale photonic devices; however, rational design of these coupled dye aggregates with precise control over their organization, interactions, and dynamics remains a challenge. DNA nanotechnology has recently been used to build an excitonic circuit by organizing pseudoisocyanine (PIC) dyes forming J-aggregates on the templates of poly(dA)-poly(dT) DNA duplexes. Here, the excitonic properties of the PIC J-aggregates on DNA are characterized spectroscopically in detail using poly(dA)-poly(dT) tract lengths of 24 and 48 base pairs. The excitonic properties of these DNA templated dye assemblies depend on the length and sequence of the DNA template. The incorporation of a gap of two GC base pairs between two segments of poly(dA)-poly(dT) DNA markedly reduces the delocalization of excitation in the J-aggregates. With a quantum dot (QD) as the light absorber and energy donor and using Alexa Fluor 647 (AF647) as the energy acceptor, with a DNA-templated J-aggregate in between, significant energy transfer from QD to AF647 is observed over a distance far longer than possible without the aggregate bridge. By comparing the efficiency of energy transfer through a continuous J-aggregate with the efficiency when the aggregate has a discontinuity in the middle, the effects of energy transfer within the aggregate bridge between the donor and acceptor are evaluated.


Asunto(s)
ADN/química , Colorantes Fluorescentes/química , Puntos Cuánticos/química , Quinolinas/química , Transferencia de Energía , Nanotecnología , Poli A/química , Poli T/química
7.
J Am Chem Soc ; 141(21): 8473-8481, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31006232

RESUMEN

The benzothiazole cyanine dye K21 forms dye aggregates on double-stranded DNA (dsDNA) templates. These aggregates exhibit a red-shifted absorption band, enhanced fluorescence emission, and an increased fluorescence lifetime, all indicating strong excitonic coupling among the dye molecules. K21 aggregate formation on dsDNA is only weakly sequence dependent, providing a flexible approach that is adaptable to many different DNA nanostructures. Donor (D)-bridge (B)-acceptor (A) complexes consisting of Alexa Fluor 350 as the donor, a 30 bp (9.7 nm) DNA templated K21 aggregate as the bridge, and Alexa Fluor 555 as the acceptor show an overall donor to acceptor energy transfer efficiency of ∼60%, with the loss of excitation energy being almost exclusively at the donor-bridge junction (63%). There was almost no excitation energy loss due to transfer through the aggregate bridge, and the transfer efficiency from the aggregate to the acceptor was about 96%. By comparing the energy transfer in templated aggregates at several lengths up to 32 nm, the loss of energy per nanometer through the K21 aggregate bridge was determined to be <1%, suggesting that it should be possible to construct structures that use much longer energy transfer "wires" for light-harvesting applications in photonic systems.


Asunto(s)
Carbocianinas/química , ADN/química , Colorantes Fluorescentes/química , Transferencia de Energía , Nanoestructuras/química
8.
J Phys Chem B ; 122(44): 10097-10107, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30351114

RESUMEN

Energetics, protein dynamics, and electronic coupling are the key factors in controlling both electron and energy transfer in photosynthetic bacterial reaction centers (RCs). Here, we examine the rates and mechanistic pathways of the P+HA- radical-pair charge recombination, triplet state formation, and subsequent triplet energy transfer from the triplet state of the bacteriochlorophyll dimer (P) to the carotenoid in a series of mutant RCs (L131LH + M160LH (D1), L131LH + M197FH (D2), and L131LH + M160LH + M197FH (T1)) of Rhodobacter sphaeroides. In these mutants, the electronic structure of P is perturbed and the P/P+ midpoint potential is systematically increased due to addition of hydrogen bonds between P and the introduced residues. High-resolution, broad-band, transient absorption spectroscopy on the femtosecond to microsecond timescale shows that the charge recombination rate increases and the triplet energy transfer rate decreases in these mutants relative to the wild type (WT). The increase of the charge recombination rate is correlated to the increase in the energy level of P+HA- and the increase in the P/P+ midpoint potential. On the other hand, the decrease in rate of triplet energy transfer in the mutants can be explained in terms of a lower energy of 3P and a shift in the electron spin density distribution in the bacteriochlorophylls of P. The triplet energy-transfer rate follows the order of WT > L131LH + M197FH > L131LH + M160LH > L131LH + M160LH + M197FH, both at room temperature and at 77 K. A pronounced temperature dependence of the rate is observed for all of the RC samples. The activation energy associated to this process is increased in the mutants relative to WT, consistent with a lower 3P energy due to the addition of hydrogen bonds between P and the introduced residues.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas Bacterianas/genética , Carotenoides/química , Transferencia de Energía , Enlace de Hidrógeno , Cinética , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides/química , Temperatura , Termodinámica
9.
Nat Mater ; 17(2): 159-166, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29180771

RESUMEN

Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Óptica y Fotónica/métodos
10.
J Phys Chem B ; 121(27): 6499-6510, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28605596

RESUMEN

In purple bacterial reaction centers, triplet excitation energy transfer occurs from the primary donor P, a bacteriochlorophyll dimer, to a neighboring carotenoid to prevent photodamage from the generation of reactive oxygen species. The BB bacteriochlorophyll molecule that lies between P and the carotenoid on the inactive electron transfer branch is involved in triplet energy transfer between P and the carotenoid. To expand the high-resolution spectral and kinetic information available for describing the mechanism, we investigated the triplet excited state formation and energy transfer pathways in the reaction center of Rhodobacter sphaeroides using pump-probe transient absorption spectroscopy over a broad spectral region on the nanosecond to microsecond time scale at both room temperature and at 77 K. Wild-type reaction centers were compared with a reaction center mutant (M182HL) in which BB is replaced by a bacteriopheophytin (Φ), as well as to reaction centers that lack the carotenoid. In wild-type reaction centers, the triplet energy transfer efficiency from P to the carotenoid was essentially unity at room temperature and at 77 K. However, in the M182HL mutant reaction centers, both the rate and efficiency of triplet energy transfer were decreased at room temperature, and at 77 K, no triplet energy transfer was observed, attributable to a higher triplet state energy of the bacteriopheophytin that replaces bacteriochlorophyll in this mutant. Finally, detailed time-resolved spectral analysis of P, carotenoid, and BB (Φ in the M182HL mutant) reveals that the triplet state of the carotenoid is coupled fairly strongly to the bridging intermediate BB in wild-type and Φ in the M182HL mutant, a fact that is probably responsible for the lack of any obvious intermediate 3BB/3Φ transient formation during triplet energy transfer.


Asunto(s)
Transferencia de Energía , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/química , Cinética , Rhodobacter sphaeroides/metabolismo , Temperatura
11.
Chemphyschem ; 15(16): 3544-53, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25195786

RESUMEN

The spontaneous micelle-to-vesicle transition in an aqueous mixture of two surface-active ionic liquids (SAILs), namely, 1-butyl-3-methylimidazolium n-octylsulfate ([C4mim][C8SO4]) and 1-dodecyl-3-methylimidazoium chloride ([C12mim]Cl) is described. In addition to detailed structural characterization obtained by using dynamic light scattering, transmission electron microscopy (TEM), and cryogenic TEM techniques, ultrafast fluorescence resonance energy transfer (FRET) from coumarin 153 (C153) as a donor (D) to rhodamine 6G (R6G) as an acceptor (A) is also used to study micelle-vesicle transitions in the present system. Structural transitions of SAIL micelles ([C4mim][C8SO4] or [C12mim]Cl micelles) to mixed SAIL vesicles resulted in significantly increased D-A distances, and therefore, increased timescale of FRET. In [C4mim][C8SO4] micelles, FRET between C153 and R6G occurs on an ultrafast timescale of 3.3 ps, which corresponds to a D-A distance of about 15 Å. As [C4mim][C8SO4] micelles are transformed into mixed micelles upon the addition of a 0.25 molar fraction of [C12mim]Cl, the timescale of FRET increases to 300 ps, which suggests an increase in the D-A distance to 31 Å. At a 0.5 molar fraction of [C12mim]Cl, unilamellar vesicles are formed in which FRET occurs on multiple timescales of about 250 and 2100 ps, which correspond to D-A distances of 33 and 47 Å. Although in micelles and mixed micelles the obtained D-A distances are well correlated with their radius, in vesicles the obtained D-A distance is within the range of the bilayer thickness.

12.
J Phys Chem B ; 118(22): 5913-23, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24810673

RESUMEN

The formation of stable unilamellar vesicles which hold great potential for biological as well as biomedical applications has been reported in the aqueous mixed solution of a surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl) and cholesterol. To make a comparison we have also shown the formation of such stable vesicles using a common cationic surfactant, benzyldimethylhexadecylammonium chloride (BHDC) which has a similar alkyl chain length but different headgroup region to that of [C16mim]Cl. It has been revealed from dynamic light scattering (DLS), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), and other optical spectroscopic techniques that the micelles of [C16mim]Cl and BHDC in aqueous solutions transform into stable unilamellar vesicles upon increasing concentration of cholesterol. We find that, as the concentration of cholesterol increases, the solvation and rotational relaxation time of C153 in [C16mim]Cl/cholesterol solution as well as in BHDC/cholesterol solution gradually increases indicating a significant decrease in the hydration behavior around the self-assemblies upon micelle-vesicle transition. However, the extent of increase in solvation and rotational relaxation time is more prominent in the case of [C16mim]Cl/cholesterol solutions than in the BHDC/cholesterol system. This indicates that [C16mim]Cl/cholesterol vesicular membranes are comparatively less hydrated and more rigid than the BHDC/cholesterol vesicular bilayer.


Asunto(s)
Colesterol/química , Imidazoles/química , Líquidos Iónicos/química , Tensoactivos/química , Liposomas Unilamelares/química , Agua/química , Micelas
13.
J Phys Chem B ; 118(13): 3669-81, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24617495

RESUMEN

In this manuscript, we have modulated the photophysical properties of curcumin in a zwitterionic (N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB-16)) micellar aggregates with addition of room temperature ionic liquids (RTILs) as well as commonly used anionic surfactant (SDS), using steady-state and time-resolved spectroscopic techniques. To modulate the photophysics, first we studied its interaction with an SB-16 micellar system, then to further exploit its photophysics, three RTILs (EmimES, EmimBS, EmimHS) with variation of alkyl chain lengths as well as SDS were used. It is observed that the rate of degradation of curcumin is drastically decreased after partitioning into the zwitterionic micellar system. It is shown that the dynamics of excited state intramolecular proton transfer (ESIPT) processes can be controlled by using those RTILs and SDS. Our study also reveals that the hindrance of nonradiative processes of curcumin, i.e., ESIPT is more pronounced in the case of RTIL containing a long alkyl chain compared to a small one. However, most interestingly the addition of long chain (dodecyl) anionic surfactant (SDS) promotes the ESIPT process of curcumin. We have also studied the effect of the addition of inorganic salt and compared the results with RTILs. The present work demonstrates an effort to decipher the photophysics of curcumin in zwitterionic micellar systems by monitoring its excited state dynamics.


Asunto(s)
Curcumina/química , Líquidos Iónicos/química , Micelas , Tensoactivos/química , Aniones/química , Concentración de Iones de Hidrógeno , Cinética , Protones , Dodecil Sulfato de Sodio/química , Temperatura
14.
J Phys Chem B ; 118(8): 2274-83, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24490812

RESUMEN

Formation and disintegration of self-assembled nanostructures in response to external stimuli are important phenomena that have been widely explored for a variety of biomedical applications. In this contribution, we report the thermally triggered assembly of block copolymer molecules in aqueous solution to form vesicles (polymersomes) and their disassembly on reduction of temperature. A new thermoresponsive diblock copolymer of poly(N-isopropylacrylamide) poly((3-methacrylamidopropyl)trimethylammonium chloride) (PNIPA-b-PMAPTAC) was synthesized by reversible addition-fragmentation chain transfer technique. The solution properties and self-assembling behavior of the block copolymer molecules were studied by turbidimetry, temperature-dependent proton nuclear magnetic resonance, fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. Fluorescence resonance energy transfer studies between coumarin-153 (C-153, donor) and rhodamine 6G (R6G, acceptor) have been performed by steady-state and picosecond-resolved fluorescence spectroscopy to probe the structural and dynamic heterogeneity of the vesicles. The occurrence of efficient energy transfer was evident from the shortening of donor lifetime in the presence of the acceptor. The capability of the vesicles to encapsulate both hydrophobic and hydrophilic molecules and release them in response to decrease in temperature makes them potentially useful as drug delivery vehicles.

15.
J Phys Chem B ; 117(44): 13795-807, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24102639

RESUMEN

This work demonstrates the utilization of bile salt aggregates as a potential biological host system for studying the binding interactions and dynamics of the poorly-water-soluble drug curcumin by means of photophysical techniques. We found that the level of degradation of curcumin is greatly suppressed upon encapsulation into the nanocavities of three different bile salt aggregates. However, NaTC aggregates are more effective to suppress the level of degradation of curcumin than NaCh and NaDC aggregates. We also report the modulation of the photophysical and dynamical properties of curcumin into the nanocavities of bile salt aggregates using steady-state and time-resolved fluorescence spectroscopy. The reduced level of interaction of curcumin with water upon incorporation into the different binding sites of bile salt aggregates results in an enhanced fluorescence intensity along with the blue shift in the emission maxima of curcumin. However, the observation of higher fluorescence quantum yield as well as longer fluorescence lifetime in NaTC aggregates compared to that in NaCh and NaDC aggregates clearly indicates a more effective decrease in the excited-state intramolecular hydrogen atom transfer (ESIHT) mediated nonradiative deactivation of curcumin by the interaction with the anionic headgroup of NaTC. The binding and location of curcumin into the bile salt aggregates has been further confirmed from the steady-state fluorescence anisotropy measurements. In addition, we have shown the effect of addition of salt on the photophysical properties of curcumin in the confined environments of bile salt aggregates. Our results indicate that on addition of salt the time scale of ESIHT process of curcumin in bile salt aggregates is markedly increased.


Asunto(s)
Ácidos y Sales Biliares/química , Curcumina/química , Portadores de Fármacos/química , Ácidos y Sales Biliares/metabolismo , Curcumina/metabolismo , Hidrógeno , Enlace de Hidrógeno , Cinética , Teoría Cuántica , Espectrofotometría Ultravioleta , Temperatura
16.
J Phys Chem B ; 117(40): 12212-23, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24041157

RESUMEN

In this work we have investigated the anomalous behavior of DMSO-water binary mixtures using 2,2'-bipyridine-3,3'-diol (BP(OH)2) as a microenvironment-sensitive excited-state-intramolecular-double-proton-transfer (ESIDPT) probe. Here we present results on the UV-vis absorption and fluorescence properties of BP(OH)2 in the binary solutions. DMSO-water binary mixtures at various compositions are an intriguing hydrogen bonded system, where DMSO acts to diminish the hydrogen bonding ability of water with the dissolved solutes. As a result, we observe unusual changes in the photophysical properties of BP(OH)2 with increasing DMSO content in complete correlation with the prior simulation and experimental results on the solvent structures and dynamics. The fluorescence quantum yield and fluorescence lifetime of BP(OH)2 depend strongly on the DMSO content and become maximum at very low mole fraction (∼0.12) of DMSO. The anomalous behavior at this particular region likely arises from the enhanced pair hydrophobicity of the medium as demonstrated by Bagchi and co-workers (Banerjee, S.; Roy, S.; Bagchi, B. J. Phys. Chem. B 2010, 114, 12875-12882). In addition we have also shown the utilization of BP(OH)2 as a potential Zn(2+)-selective fluorescent sensor in a 1:1 DMSO-water binary mixture useful for biological applications. We observed highly enhanced fluorescence emission of BP(OH)2 selectively for binding with the Zn(2+) metal ion. Moreover, the fluorescence emission maximum of BP(OH)2-Zn(2+) is significantly blue-shifted with a reduced Stokes shift due to the inhibition of the ESIDPT process of BP(OH)2 through strong coordination.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Dimetilsulfóxido/química , Agua/química , Zinc/química , 2,2'-Dipiridil/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Protones , Teoría Cuántica , Espectrofotometría Ultravioleta
17.
J Phys Chem B ; 117(32): 9508-17, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23865472

RESUMEN

In this article we have reported the fluorescence resonance energy transfer (FRET) study in our earlier characterized surface active ionic liquids (SAILs)-containing microemulsion, i.e., N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([P13][Tf2N])/[CTA][AOT]/isopropyl myristate ([IPM]) and N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide ([N3111][Tf2N])/[CTA][AOT]/[IPM] microemulsions (Banerjee, C.; Mandal, S.; Ghosh, S.; Kuchlyan, J.; Kundu, N.; Sarkar, N. J. Phys. Chem. B 2013, 117, 3927-3934). The occurrence of effective FRET from the donor, coumarin-153 (C-153) to the acceptor rhodamine 6G (R6G) is evident from the decrease in the steady state fluorescence intensity of the donor with addition of acceptor and subsequent increase in the fluorescence intensity of the acceptor in the presence of donor. The excitation wavelength dependent FRET from C-153 to R6G has also been performed to assess the dynamic heterogeneity of these confined systems. In time-resolved experiments, the significant rise time of the acceptor in the presence of the donor further confirms the occurrence of FRET. The multiple donor-acceptor (D-A) distances, for various microemulsions, obtained from the rise times of the acceptor emission in the presence of a donor can be rationalized from the varying distribution of the donor, C-153, in the different regions of the microemulsion. Time-resolved measurement reveals that with increasing excitation wavelength from 408 to 440 nm, the contribution of the faster rise component of FRET increases significantly due to the close proximity of the C-153 and R6G in the polar region of the microemulsion where occurrence of FRET is very high. Moreover, we have also studied the FRET with variation of R (R = [room temperature ionic liquids (RTILs)]/[surfactant]) and shown that the effect of excitation wavelength on FRET is similar irrespective of R values.


Asunto(s)
Cumarinas/química , Emulsiones/química , Líquidos Iónicos/química , Rodaminas/química , Transferencia Resonante de Energía de Fluorescencia , Estructura Molecular , Solventes/química , Propiedades de Superficie , Temperatura
18.
Langmuir ; 29(32): 10066-76, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23859437

RESUMEN

The micelle-vesicle-micelle transition in aqueous mixtures of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and the anionic surfactant-like ionic liquid 1-butyl-3-methylimidazolium octyl sulfate, [C4mim][C8SO4] has been investigated by using dynamic light scattering (DLS), transmission electron microscopy (TEM), surface tension, conductivity, and fluorescence anisotropy at different volume fractions of surfactant. The surface tension value decreases sharply with increasing CTAB concentration up to ∼0.38 volume fraction and again increases up to ∼0.75 volume fraction of CTAB. Depending upon their relative amount, these surfactants either mixed together to form vesicles and/or micelles, or both of these structures were in equilibrium. Fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), incorporated in this system at different composition of surfactant indicates the formation of micelle and vesicle structures. The apparent hydrodynamic diameter of these large multilamellar vesicles is about ∼200 nm-300 nm obtained by DLS measurement and finally confirmed by TEM micrographs. The large multilamellar vesicles are transformed into small unilamellar ones by sonication using a Lab-line instruments probe sonicator with a diameter of ∼90-125 nm. To investigate the heterogeneity, solvent, and rotational relaxation of coumarin-153 (C-153) have been investigated in these unilamellar vesicles by using picosecond time-resolved fluorescence spectroscopic technique. The solvation dynamics of C-153 in these vesicles is found to be biexponential with average time constant ∼580 ps. This indicates the slow relaxation of water molecules in the surfactant bilayer. In accordance with solvation dynamics, fluorescence anisotropy analysis of C-153 in unilamellar vesicles also indicates hindered rotation compared to bulk water.


Asunto(s)
Compuestos de Cetrimonio/química , Imidazoles/química , Líquidos Iónicos/química , Octanos/química , Tensoactivos/química , Aniones/química , Cationes/química , Cetrimonio , Hidrodinámica , Micelas , Estructura Molecular , Tamaño de la Partícula , Rotación , Solventes/química , Propiedades de Superficie , Agua/química
19.
J Phys Chem B ; 117(24): 7472-80, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23697660

RESUMEN

Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe molecule.


Asunto(s)
Líquidos Iónicos/química , Miristatos/química , Aceites/química , Temperatura , Aniones/química , Emulsiones/química , Estructura Molecular , Propiedades de Superficie
20.
J Phys Chem B ; 117(23): 6906-16, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23687942

RESUMEN

In this Article, we focused on the modulation of the photophysical properties of curcumin, an anti-cancer drug, in aqueous and nonaqueous reverse micelles of AOT in n-heptane using steady-state and time-resolved fluorescence spectroscopy. The instability of curcumin is a common problem which restricts its numerous applications like Alzheimer disease, HIV infections, cystic fibrosis, etc. Our study reveals that curcumin shows comparatively higher stability after encapsulation into the interfacial region of the reverse micelle. To get a vivid description of the microenvironment, we added hydrogen-bond-donor (HBD) as well as non-hydrogen-bond-donor (NBD) core solvents. For experimental purposes, we used water, ethylene glycol (EG), glycerol (GY) as HBD solvents and N,N-dimethyl formamide (DMF) as a NBD solvent. With increasing amount of core solvents, irrespective of HBD or NBD, the fluorescence intensity and lifetime of curcumin increase with remarkable red-shift inside the reverse micelle. This is attributed to the modulation of the nonradiative rates associated with the excited-state intermolecular hydrogen bonding between the pigment and the polar solvents. We obtained a high partition constant at W0 = 0 (W0 = [core solvent]/[AOT]) which is certainly due to the hydrogen bonding between the negatively charged sulfonate group of AOT and hydroxyl groups of curcumin. Steady-state anisotropy and time-resolved results give an idea about the microenvironment sensed by the curcumin molecules. The red-shift of emission spectra, increase in the value of ET(30), as well as the increase in the fluorescence lifetime were interpreted as being caused by the partition of the probe between the micellar interface and the polar core solvent. Indeed, we show here that it is possible to control the excited state intramolecular proton transfer (ESIPT) process of curcumin by simply changing the properties of the AOT reverse micelle interfaces by choosing the appropriate polar solvents to make the reverse micelle media.


Asunto(s)
Curcumina/química , Micelas , Heptanos/química , Enlace de Hidrógeno , Protones , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...