RESUMEN
Pathogen removal in wastewater offers a chance to recover water and nutrients for crop production, reducing environmental contamination and public health risks. However, the risk of pathogens regrowing in treated effluents can endanger public health if reused in agriculture, attracting stringent reuse standards. While advanced oxidation processes (AOPs) promise to reduce pathogens, eliminating regrowth potential in AOP-treated effluents requires further scrutiny. This review aimed to summarize the available evidence on understanding pathogen reduction and regrowth potential in AOP-treated effluents, following best practices for scoping reviews like the preferred reporting items for systematic reviews and meta-analysis (PRISMA). It covers recent pathogen studies under AOPs, current AOP investigations, the impact of AOP dosage and retention time on pathogen control, and challenges in reusing AOP-treated effluents for crop production. Additionally, it identifies areas needing improvement or complementary treatments for pathogen-free effluents with no regrowth potential. The review concludes by summarizing key findings and suggesting research areas for further exploration.
RESUMEN
Bambara groundnut (Vigna subterranean L. Verdc) is grown by smallholders and subsistence farmers in the marginal parts of sub-Saharan Africa. This legume is native to Africa and is cultivated throughout semi-arid sub-Saharan Africa. It is hardy and has been recognized as a nutritious food source in times of scarcity. Drought can negatively affect the germination or establishment of seedlings in the early stages of crop growth. Drought can limit the growing season of certain crops and create conditions that encourage the invasion of insects and diseases. Drought can also lead to a lack of crop yield, leading to rising food prices, shortages, and possibly malnutrition in vulnerable populations. A drought-tolerant genotype can be identified at the germination stage of Bambara groundnut by screening for drought-tolerance traits, and this knowledge can be applied to Bambara crop improvement programs to identify drought-tolerant traits during early growth phases. As an osmolyte, polyethylene glycol (PEG 6000) reduced water potential and simulated drought stress in Bambara groundnut seeds of different genotypes. Osmolytes are low-molecular-weight organic compounds that influence biological fluid properties. In this study, 24 Bambara groundnut genotypes were used. Data were collected on seed germination percentage (G%), germination velocity index (GVI), mean germination time (MGT), root dry mass (RDM), root fresh mass (RFM), and seven drought tolerance indices: mean productivity (MP), tolerance index (TOL), geometric mean productivity (GMP), stress susceptibility index (SSI), yield index (YI), yield stability index (YSI), stress tolerance index (STI) as well as seed coat color measurements. The data were applied to the mean observation of genotypes under simulated drought conditions (Ys) and the mean observation of genotypes under controlled conditions (Yp). Germination%, germination velocity index (GVI), mass germination time (MGT), and root fresh mass (RFM) differed significantly (p < 0.001) between the two stress conditions. Bambara genotypes Acc 82 and Acc 96 were found to be the most drought-tolerant.
RESUMEN
Citron watermelon (Citrullus lanatus var. citroides) is a drought-tolerant cucurbit crop widely grown in sub-Saharan Africa in arid and semi-arid environments. The species is a C3 xerophyte used for multiple purposes, including intercropping with maize, and has a deep taproot system. The deep taproot system plays a key role in the species' adaptation to dry conditions. Understanding the root system development of this crop could be useful to identify traits for breeding water-use efficient and drought-tolerant varieties. This study compared the root system architecture of citron watermelon accessions under water-stress conditions. Nine selected and drought-tolerant citron watermelon accessions were grown under non-stress (NS) and water stress (WS) conditions using the root rhizotron procedure in a glasshouse. The following root system architecture (RSA) traits were measured: root system width (RSW), root system depth (RSD), convex hull area (CHA), total root length (TRL), root branch count (RBC), total root volume (TRV), leaf area (LA), leaf number (LN), first seminal root length (FSRL), seminal root angle (SRA), root dry mass (RDM), shoot dry mass (SDM), root−shoot mass ratio (RSM), root mass ratio (RMR), shoot mass ratio (SMR) and root tissue density (RTD). The data collected on RSA traits were subjected to an analysis of variance (ANOVA), correlation and principal component analyses. ANOVA revealed a significant (p < 0.05) accession × water stress interaction effect for studied RSA traits. Under WS, RDM exhibited significant and positive correlations with RSM (r = 0.65), RMR (r = 0.66), RSD (r = 0.66), TRL (r = 0.60), RBC (r = 0.72), FSRL (r = 0.73) and LN (r = 0.70). The principal component analysis revealed high loading scores for the following RSA traits: RSW (0.89), RSD (0.97), TRL (0.99), TRV (0.90), TRL (0.99), RMR (0.96) and RDM (0.76). In conclusion, the study has shown that the identified RSA traits could be useful in crop improvement programmes for citron watermelon genotypes with enhanced drought adaptation for improved yield performance under drought-prone environments.
RESUMEN
Long-term cultivation of citron watermelon under water-constrained environments in sub-Saharan Africa resulted in the selection and domestication of highly tolerant genotypes. However, information on the magnitude of variation for drought tolerance in citron watermelon is limited for the effective selection of suitable genotypes for breeding. The objective of this study was to determine variation for drought tolerance among South African citron watermelon landrace accessions for selection and use as genetic stock for drought-tolerance breeding in this crop and closely-related cucurbit crops. Forty genetically differentiated citron watermelon accessions were grown under non-stress (NS) and drought-stress (DS) conditions under glasshouse environment. Data of physiological (i.e., leaf gas exchange and chlorophyll fluorescence parameters) and morphological traits (i.e., shoot and root system architecture traits, and fruit yield) were collected and subjected to various parametric statistical analyses. The accessions varied significantly for assessed traits under both NS and DS conditions which aided classification into five groups, namely; A (highly drought-tolerant), B (drought-tolerant), C (moderate drought-tolerant), D (drought-sensitive) and E (highly drought-sensitive). Drought-tolerant genotypes produced more fruit yield with less water compared with drought-sensitive genotypes. Several physiological and morphological parameters correlated with fruit yield under DS condition namely: instantaneous water-use efficiency (r = 0.97), leaf dry weight (r = 0.77), total root length (r = 0.46) and root dry weight (r = 0.48). The following accessions, namely: WWM-46, WWM-68, WWM-41(A), WWM-15, WWM-64, WWM-57, WWM-47, WWM-37(2), WWM-79, WWM-05 and WWM-50) were identified as highly drought-tolerant and recommended for drought-tolerance breeding in this crop or related cucurbit crops such as sweet dessert watermelon.