Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmacol Res ; 203: 107176, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583687

RESUMEN

Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.


Asunto(s)
Cannabidiol , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil , Hipocampo , Receptores de Cannabinoides , Reconocimiento en Psicología , Animales , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/metabolismo , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Receptores de Cannabinoides/metabolismo , Masculino , Reconocimiento en Psicología/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratas , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Memoria/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Simulación del Acoplamiento Molecular
2.
Cannabis Cannabinoid Res ; 8(5): 749-767, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37015060

RESUMEN

Introduction: How sex influences prefrontal cortexes (PFCs) synaptic development through adolescence remains unclear. Materials and Methods: In this study we describe sex-specific cellular and synaptic trajectories in the rat PFC from adolescence to adulthood. Results: The excitability of PFC layer 5 pyramidal neurons was lower in adult females compared with other developmental stages. The developmental course of endocannabinoid-mediated long-term depression (eCB-LTD) was sexually dimorphic, unlike long-term potentiation or mGluR3-LTD. eCB-LTD was expressed in juvenile females but appeared only at puberty in males. Endovanilloid TRPV1R or eCB receptors were engaged during LTD in a sequential and sexually dimorphic manner. Gene expression of the eCB/vanilloid systems was sequential and sex specific. LTD-incompetent juvenile males had elevated expression levels of the CB1R-interacting inhibitory protein cannabinoid receptor interacting protein 1a and of the 2-arachidonoylglycerol-degrading enzyme ABHD6. Pharmacological inhibition of ABHD6 or MAGL enabled LTD in young males, whereas inhibition of anandamide degradation was ineffective. Conclusions: These results reveal sex differences in the maturational trajectories of the rat PFC.


Asunto(s)
Endocannabinoides , Maduración Sexual , Ratas , Femenino , Animales , Masculino , Endocannabinoides/metabolismo , Plasticidad Neuronal/genética , Potenciación a Largo Plazo , Expresión Génica
3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835329

RESUMEN

Several studies have supported the association between maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of gestation and an increased susceptibility to the development of various psychiatric and neurological disorders, including autism and other neurodevelopmental disorders (NDDs), in the offspring. In the present work, we aimed to provide extensive characterization of the short- and long-term consequences of MIA in the offspring, both at the behavioral and immunological level. To this end, we exposed Wistar rat dams to Lipopolysaccharide and tested the infant, adolescent and adult offspring across several behavioral domains relevant to human psychopathological traits. Furthermore, we also measured plasmatic inflammatory markers both at adolescence and adulthood. Our results support the hypothesis of a deleterious impact of MIA on the neurobehavioral development of the offspring: we found deficits in the communicative, social and cognitive domains, together with stereotypic-like behaviors and an altered inflammatory profile at the systemic level. Although the precise mechanisms underlying the role of neuroinflammatory states in neurodevelopment need to be clarified, this study contributes to a better understanding of the impact of MIA on the risk of developing behavioral deficits and psychiatric illness in the offspring.


Asunto(s)
Trastorno Autístico , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratas , Embarazo , Animales , Femenino , Adulto , Masculino , Adolescente , Ratas Wistar , Lipopolisacáridos , Conducta Animal/fisiología , Cognición , Modelos Animales de Enfermedad
4.
Psychopharmacology (Berl) ; 240(1): 137-147, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36469097

RESUMEN

RATIONALE: Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID) and the leading monogenic cause of autism spectrum disorder (ASD). Serotonergic neurotransmission has a key role in the modulation of neuronal activity during development, and therefore, it has been hypothesized to be involved in ASD and co-occurring conditions including FXS. As serotonin is involved in synaptic remodeling and maturation, serotonergic insufficiency during childhood may have a compounding effect on brain patterning in neurodevelopmental disorders, manifesting as behavioral and emotional symptoms. Thus, compounds that stimulate serotonergic signaling such as psilocybin may offer promise as effective early interventions for developmental disorders such as ASD and FXS. OBJECTIVES: The aim of the present study was to test whether different protocols of psilocybin administration mitigate cognitive deficits displayed by the recently validated Fmr1-Δexon 8 rat model of ASD, which is also a model of FXS. RESULTS: Our results revealed that systemic and oral administration of psilocybin microdoses normalizes the aberrant cognitive performance displayed by adolescent Fmr1-Δexon 8 rats in the short-term version of the novel object recognition test-a measure of exploratory behavior, perception, and recognition. CONCLUSIONS: These data support the hypothesis that serotonin-modulating drugs such as psilocybin may be useful to ameliorate ASD-related cognitive deficits. Overall, this study provides evidence of the beneficial effects of different schedules of psilocybin treatment in mitigating the short-term cognitive deficit observed in a rat model of FXS.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Ratas , Animales , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/psicología , Psilocibina/farmacología , Psilocibina/uso terapéutico , Serotonina , Cognición , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
5.
Neuropsychopharmacology ; 48(6): 897-907, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36114286

RESUMEN

Autism spectrum disorder (ASD) has a multifactorial etiology. Major efforts are underway to understand the neurobiological bases of ASD and to develop efficacious treatment strategies. Recently, the use of cannabinoid compounds in children with neurodevelopmental disorders including ASD has received increasing attention. Beyond anecdotal reports of efficacy, however, there is limited current evidence supporting such an intervention and the clinical studies currently available have intrinsic limitations that make the interpretation of the findings challenging. Furthermore, as the mechanisms underlying the beneficial effects of cannabinoid compounds in neurodevelopmental disorders are still largely unknown, the use of drugs targeting the endocannabinoid system remains controversial. Here, we studied the role of endocannabinoid neurotransmission in the autistic-like traits displayed by the recently validated Fmr1-Δexon 8 rat model of autism. Fmr1-Δexon 8 rats showed reduced anandamide levels in the hippocampus and increased 2-arachidonoylglycerol (2-AG) content in the amygdala. Systemic and intra-hippocampal potentiation of anandamide tone through administration of the anandamide hydrolysis inhibitor URB597 ameliorated the cognitive deficits displayed by Fmr1-Δexon 8 rats along development, as assessed through the novel object and social discrimination tasks. Moreover, blockade of amygdalar 2-AG signaling through intra-amygdala administration of the CB1 receptor antagonist SR141716A prevented the altered sociability displayed by Fmr1-Δexon 8 rats. These findings demonstrate that anandamide and 2-AG differentially modulate specific autistic-like traits in Fmr1-Δexon 8 rats in a brain region-specific manner, suggesting that fine changes in endocannabinoid mechanisms contribute to ASD-related behavioral phenotypes.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Cannabinoides , Ratas , Animales , Endocannabinoides , Trastorno Autístico/tratamiento farmacológico , Trastorno del Espectro Autista/tratamiento farmacológico , Modelos Genéticos , Alcamidas Poliinsaturadas/farmacología , Fenotipo , Receptor Cannabinoide CB1/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
6.
Sci Rep ; 12(1): 22535, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581671

RESUMEN

Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder emerging in early life characterized by impairments in social interaction, poor verbal and non-verbal communication, and repetitive patterns of behaviors. Among the best-known genetic risk factors for ASD, there are mutations causing the loss of the Fragile X Messenger Ribonucleoprotein 1 (FMRP) leading to Fragile X syndrome (FXS), a common form of inherited intellectual disability and the leading monogenic cause of ASD. Being a pivotal regulator of motor activity, motivation, attention, and reward processing, dopaminergic neurotransmission has a key role in several neuropsychiatric disorders, including ASD. Fmr1 Δexon 8 rats have been validated as a genetic model of ASD based on FMR1 deletion, and they are also a rat model of FXS. Here, we performed behavioral, biochemical and in vivo SPECT neuroimaging experiments to investigate whether Fmr1 Δexon 8 rats display ASD-like repetitive behaviors associated with changes in striatal dopamine transporter (DAT) availability assessed through in vivo SPECT neuroimaging. At the behavioral level, Fmr1 Δexon 8 rats displayed hyperactivity in the open field test in the absence of repetitive behaviors in the hole board test. However, these behavioral alterations were not associated with changes in striatal DAT availability as assessed by non-invasive in vivo SPECT and Western blot analyses.


Asunto(s)
Trastorno del Espectro Autista , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Animales , Ratas , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
7.
Nutr Neurosci ; 25(5): 898-911, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32912100

RESUMEN

Background and objective: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder for which no treatments exist. Fragile X syndrome (FXS) is the most common form of inherited mental retardation and the most frequent monogenic cause of ASD. Given the lack of pharmacological treatments for ASD, increasing interest is devoted to non-pharmacological approaches, including dietary interventions. Omega-3 polyunsaturated fatty acids (PUFAs) are critical for neurobehavioraldevelopment. This study had two aims: 1. To validatethe recently developed Fmr1-Δexon 8 rat model of FXS; 2. To assess the impact of omega-3 PUFAs dietary supplementation during pregnancy and lactation on the altered behavior displayed by Fmr1-Δexon 8 rats.Methods: Female Fmr1-Δexon 8 and wild-type Sprague-Dawley rats were fed with either an omega-3 PUFAs enriched diet or with an isocaloric control diet during pregnancy and lactation. Behavioral experiments were carried out on the infant (Postnatal days (PNDs) 9 and 13), juvenile (PND 35) and adult (PND 90) male offspring.Results: Fmr1-Δexon 8 pups showed hypolocomotion, reduced ultrasonic vocalizations (USVs) emission and impaired social discrimination compared to wild-type controls. Juvenile and adult Fmr1-Δexon 8 rats showed deficits in the social and cognitive domains, that were counteracted by perinatal omega-3 PUFAs supplementation.Conclusion: Our results support the validity of the Fmr1-Δexon 8 rat model to mimic key autistic-like features and support an important role of omega-3 PUFAs during of neurodevelopment. Although the mechanisms underlying the beneficial effects of omega-3 PUFAs supplementation in ASD needs to be clarified, this dietary intervention holds promise to mitigate core and comorbid autistic features.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ácidos Grasos Omega-3 , Síndrome del Cromosoma X Frágil , Animales , Trastorno del Espectro Autista/prevención & control , Trastorno Autístico/prevención & control , Cognición , Suplementos Dietéticos , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Modelos Genéticos , Embarazo , Ratas , Ratas Sprague-Dawley
8.
J Neurochem ; 157(5): 1408-1435, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33569830

RESUMEN

Social rewards are fundamental to survival and overall health. Several studies suggest that adequate social stimuli during early life are critical for developing appropriate socioemotional and cognitive skills, whereas adverse social experiences negatively affect the proper development of brain and behavior, by increasing the susceptibility to develop neuropsychiatric conditions. Therefore, a better understanding of the neural mechanisms underlying social interactions, and their rewarding components in particular, is an important challenge of current neuroscience research. In this context, preclinical research has a crucial role: Animal models allow to investigate the neurobiological aspects of social reward in order to shed light on possible neurochemical alterations causing aberrant social reward processing in neuropsychiatric diseases, and they allow to test the validity and safety of innovative therapeutic strategies. Here, we discuss preclinical research that has investigated the rewarding properties of two forms of social interaction that occur in different phases of the lifespan of mammals, that is, mother-infant interaction and social interactions with peers, by focusing on the main neurotransmitter systems mediating their rewarding components. Together, the research performed so far helped to elucidate the mechanisms of social reward and its psychobiological components throughout development, thus increasing our understanding of the neurobiological substrates sustaining social functioning in health conditions and social dysfunction in major psychiatric disorders.


Asunto(s)
Neuroquímica , Recompensa , Roedores/psicología , Conducta Social , Envejecimiento/psicología , Animales , Humanos , Ratones , Ratas , Interacción Social
9.
Neurosci Biobehav Rev ; 121: 128-143, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33358985

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Cannabinoides , Trastorno del Espectro Autista/tratamiento farmacológico , Encéfalo , Cannabinoides/uso terapéutico , Endocannabinoides , Humanos
10.
Neuropsychopharmacology ; 45(12): 2012-2019, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32506112

RESUMEN

Methylenedioxypyrovalerone (MDPV) is the most popular synthetic cathinone found in products marketed as 'bath salts', widely abused among teenagers and young adults. Synthetic cathinones have pharmacological effects resembling those of psychostimulants, which are known to disrupt a variety of social behaviors. However, despite the popular use of MDPV by young people in social contexts, information about its effects on social behavior is scarce. To investigate the impact of MDPV on social behavior at young age, and the underlying neurobehavioral mechanisms, we focused on social play behavior. Social play behavior is the most characteristic social behavior displayed by young mammals and it is crucial for neurobehavioral development. Treatment with MDPV reduced social play behavior in both juvenile and young adult male rats, and its play-suppressant effect was subject to tolerance but not sensitization. As the behavioral effects of MDPV have been ascribed to dopaminergic and noradrenergic neurotransmission, and given the role of these neurotransmitters in social play, we investigated the involvement of dopamine and noradrenaline in the play-suppressant effects of MDPV. The effects of MDPV on social play were blocked by either the α2 adrenoceptor antagonist RX821002 or the dopamine receptor antagonist flupenthixol, given alone or together at sub-effective doses. In sum, MDPV selectively suppresses the most vigorous social behavior of developing rats through both noradrenergic and dopaminergic mechanisms. This study provides important preclinical evidence of the deleterious effects of MDPV on social behavior, and as such increases our understanding of the neurobehavioral effects of this popular cathinone.


Asunto(s)
Benzodioxoles , Estimulantes del Sistema Nervioso Central , Animales , Benzodioxoles/farmacología , Dopamina , Masculino , Pirrolidinas/farmacología , Ratas , Cathinona Sintética
11.
Br J Pharmacol ; 177(2): 449-463, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31658362

RESUMEN

BACKGROUND AND PURPOSE: Marijuana is the illicit drug most commonly used among pregnant and breastfeeding women. Different studies reported long-term adverse effects induced by in utero exposure to the main component of marijuana, Δ9 -tetrahydrocannabinol (THC), both in rodents and in humans. However, little is known about any potential sex-dependent effects of marijuana consumption during pregnancy on newborns at early developmental ages. EXPERIMENTAL APPROACH: We studied the effects of prenatal exposure to the cannabinoid receptor agonist WIN55,212-2 (WIN; 0.5 mg·kg-1 from GD5 to GD20) on the emotional reactivity and cognitive performance of male and female rat offspring from infancy through adolescence and tested the role of mGlu5 receptor signalling in the observed effects. KEY RESULTS: Prenatally WIN-exposed male infant pups emitted less isolation-induced ultrasonic vocalizations compared with male control pups, when separated from the dam and siblings and showed increased locomotor activity while females were spared. These effects were normalized when male pups were treated with the positive allosteric modulator of mGlu5 receptor CDPPB. When tested at the prepubertal and pubertal periods, WIN-prenatally exposed rats of both sexes did not show any difference in social play behaviour, anxiety and temporal order memory. CONCLUSIONS AND IMPLICATIONS: We reveal a previously undisclosed sexual divergence in the consequences of fetal cannabinoids on newborns at early developmental ages, which is dependent on mGlu5 receptor signalling. These results provide new impetus for the urgent need to investigate the functional and behavioural substrates of prenatal cannabinoid exposure in both the male offspring and the female offspring.


Asunto(s)
Conducta Animal/efectos de los fármacos , Benzoxazinas/toxicidad , Encéfalo/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/toxicidad , Cognición/efectos de los fármacos , Emociones/efectos de los fármacos , Morfolinas/toxicidad , Naftalenos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Factores de Edad , Animales , Benzamidas/farmacología , Encéfalo/metabolismo , Femenino , Locomoción/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Embarazo , Pirazoles/farmacología , Ratas Wistar , Receptor del Glutamato Metabotropico 5/metabolismo , Factores Sexuales , Conducta Social , Vocalización Animal/efectos de los fármacos
12.
Front Cell Neurosci ; 13: 479, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708750

RESUMEN

Prenatal exposure to the antiepileptic drug valproic acid (VPA) induces autism spectrum disorder (ASD) in humans and autistic-like behaviors in rodents, which makes it a good model to study the neural underpinnings of ASD. Rats prenatally exposed to VPA show profound deficits in the social domain. The altered social behavior displayed by VPA-exposed rats may be due to either a deficit in social reward processing or to a more general inability to properly understand and respond to social signals. To address this issue, we performed behavioral, electrophysiological and neurochemical experiments and tested the involvement of the brain reward system in the social dysfunctions displayed by rats prenatally exposed to VPA (500 mg/kg). We found that, compared to control animals, VPA-exposed rats showed reduced play responsiveness together with impaired sociability in the three-chamber test and altered social discrimination abilities. In addition, VPA-exposed rats showed altered expression of dopamine receptors together with inherent hyperexcitability of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). However, when tested for socially-induced conditioned place preference, locomotor response to amphetamine and sucrose preference, control and VPA-exposed rats performed similarly, indicating normal responses to social, drug and food rewards. On the basis of the results obtained, we hypothesize that social dysfunctions displayed by VPA-exposed rats are more likely caused by alterations in cognitive aspects of the social interaction, such as the interpretation and reciprocation of social stimuli and/or the ability to adjust the social behavior of the individual to the changing circumstances in the social and physical environment, rather than to inability to enjoy the pleasurable aspects of the social interaction. The observed neurochemical and electrophysiological alterations in the NAc may contribute to the inability of VPA-exposed rats to process and respond to social cues, or, alternatively, represent a compensatory mechanism towards VPA-induced neurodevelopmental insults.

13.
Front Behav Neurosci ; 13: 23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30890922

RESUMEN

Heavy cannabis consumption among adolescents is associated with significant and lasting neurobiological, psychological and health consequences that depend on the age of first use. Chronic exposure to cannabinoid agonists during the perinatal period or adolescence alters social behavior and prefrontal cortex (PFC) activity in adult rats. However, sex differences on social behavior as well as PFC synaptic plasticity after acute cannabinoid activation remain poorly explored. Here, we determined that the consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212-2 differently affected PFC neuronal and synaptic functions after 24 h in male and female rats during the pubertal and adulthood periods. During puberty, single cannabinoid exposure (SCE) reduced play behavior in females but not males. In contrast, the same treatment impaired sociability in both sexes at adulthood. General exploration and memory recognition remained normal at both ages and both sexes. At the synaptic level, SCE ablated endocannabinoid-mediated synaptic plasticity in the PFC of females of both ages and heightened excitability of PFC pyramidal neurons at adulthood, while males were spared. In contrast, cannabinoid exposure was associated with impaired long-term potentiation (LTP) specifically in adult males. Together, these data indicate behavioral and synaptic sex differences in response to a single in vivo exposure to cannabinoid at puberty and adulthood.

14.
Psychopharmacology (Berl) ; 236(9): 2557-2568, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30903212

RESUMEN

RATIONALE: The endocannabinoid and the endogenous opioid systems interact in the modulation of social play behavior, a highly rewarding social activity abundantly expressed in young mammals. Prolonged exposure to opioid or cannabinoid receptor agonists induces cross-tolerance or cross-sensitization to their acute behavioral effects. OBJECTIVES AND METHODS: Behavioral and biochemical experiments were performed to investigate whether cross-tolerance or cross-sensitization occurs to the play-enhancing effects of cannabinoid and opioid drugs on social play behavior, and the possible brain substrate involved. RESULTS: The play-enhancing effects induced by systemic administration of JZL184, which inhibits the hydrolysis of the endocannabinoid 2-AG, were suppressed in animals repeatedly pretreated with the opioid receptor agonist morphine. Conversely, acute morphine administration increased social play in rats pretreated with vehicle or with either JZL184 or the cannabinoid agonist WIN55,212-2. Acute administration of JZL184 increased the activation of both CB1 receptors and their effector Akt in the nucleus accumbens and prefrontal cortex, brain regions important for the expression of social play. These effects were absent in animals pretreated with morphine. Furthermore, only animals repeatedly treated with morphine and acutely administered with JZL184 showed reduced activation of CB1 receptors and Akt in the amygdala. CONCLUSIONS: The present study demonstrates a dynamic opioid-cannabinoid interaction in the modulation of social play behavior, occurring in limbic brain areas strongly implicated in social play behavior. A better understanding of opioid-cannabinoid interactions in social play contributes to clarify neurobiological aspects of social behavior at young age, which may provide new therapeutic targets for social dysfunctions.


Asunto(s)
Analgésicos Opioides/farmacología , Cannabinoides/farmacología , Tolerancia a Medicamentos , Juego e Implementos de Juego/psicología , Conducta Social , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Tolerancia a Medicamentos/fisiología , Endocannabinoides/metabolismo , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Ratas Wistar
15.
Elife ; 72018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30201092

RESUMEN

Cannabinoids can cross the placenta, thus may interfere with fetal endocannabinoid signaling during neurodevelopment, causing long-lasting deficits. Despite increasing reports of cannabis consumption during pregnancy, the protracted consequences of prenatal cannabinoid exposure (PCE) remain incompletely understood. Here, we report sex-specific differences in behavioral and neuronal deficits in the adult progeny of rat dams exposed to low doses of cannabinoids during gestation. In males, PCE reduced social interaction, ablated endocannabinoid long-term depression (LTD) and heightened excitability of prefrontal cortex pyramidal neurons, while females were spared. Group 1 mGluR and endocannabinoid signaling regulate emotional behavior and synaptic plasticity. Notably, sex-differences following PCE included levels of mGluR1/5 and TRPV1R mRNA. Finally, positive allosteric modulation of mGlu5 and enhancement of anandamide levels restored LTD and social interaction in PCE adult males. Together, these results highlight marked sexual differences in the effects of PCE and introduce strategies for reversing detrimental effects of PCE.


Asunto(s)
Cannabinoides/farmacología , Corteza Prefrontal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Caracteres Sexuales , Regulación Alostérica/efectos de los fármacos , Animales , Ansiedad/patología , Ácidos Araquidónicos/metabolismo , Conducta Animal , Endocannabinoides/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/patología , Alcamidas Poliinsaturadas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/patología , Embarazo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Conducta Social , Aislamiento Social , Canales Catiónicos TRPV/metabolismo
16.
Eur Neuropsychopharmacol ; 28(1): 85-96, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29174949

RESUMEN

Prenatal exposure to the antiepileptic and mood stabilizer valproic acid (VPA) is an environmental risk factor for autism spectrum disorders (ASD), although recent epidemiological studies show that the public awareness of this association is still limited. Based on the clinical findings, prenatal VPA exposure in rodents is a widely used preclinical model of ASD. However, there is limited information about the precise biochemical mechanisms underlying the link between ASD and VPA. Here, we tested the effects of increasing doses of VPA on behavioral features resembling core and secondary symptoms of ASD in rats. Only when administered prenatally at the dose of 500mg/kg, VPA induced deficits in communication and social discrimination in rat pups, and altered social behavior and emotionality in the adolescent and adult offspring in the absence of gross malformations. This dose of VPA inhibited histone deacetylase in rat embryos and favored the formation of DNA double strand breaks (DSB), but impaired their repair. The defective DSB response was no more visible in one-day-old pups, thus supporting the hypothesis that unrepaired VPA-induced DNA damage at the time of neural tube closure may underlie the autistic-like traits displayed in the course of development by rats prenatally exposed to VPA. These experiments help to understand the neurodevelopmental trajectories affected by prenatal VPA exposure and identify a biochemical link between VPA exposure during gestation and ASD.


Asunto(s)
Trastorno Autístico/inducido químicamente , Trastorno Autístico/metabolismo , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Ácido Valproico/toxicidad , Animales , Ansiedad/inducido químicamente , Ansiedad/genética , Ansiedad/metabolismo , Trastorno Autístico/genética , Daño del ADN/fisiología , Reparación del ADN/fisiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Histonas/metabolismo , Masculino , Embarazo , Ratas Wistar , Conducta Social , Vocalización Animal
17.
J Neurosci ; 37(29): 6851-6868, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28630250

RESUMEN

Energy-dense, yet nutritionally poor food is a high-risk factor for mental health disorders. This is of particular concern during adolescence, a period often associated with increased consumption of low nutritional content food and higher prevalence of mental health disorders. Indeed, there is an urgent need to understand the mechanisms linking unhealthy diet and mental disorders. Deficiency in n-3 polyunsaturated fatty acids (PUFAs) is a hallmark of poor nutrition and mood disorders. Here, we developed a mouse model of n-3 PUFA deficiency lasting from adolescence into adulthood. Starting nutritional deficits in dietary n-3 PUFAs during adolescence decreased n-3 PUFAs in both medial prefrontal cortex (mPFC) and nucleus accumbens, increased anxiety-like behavior, and decreased cognitive function in adulthood. Importantly, we discovered that endocannabinoid/mGlu5-mediated LTD in the mPFC and accumbens was abolished in adult n-3-deficient mice. Additionally, mPFC NMDAR-dependent LTP was also lacking in the n-3-deficient group. Pharmacological enhancement of the mGlu5/eCB signaling complex, by positive allosteric modulation of mGlu5 or inhibition of endocannabinoid 2-arachidonylglycerol degradation, fully restored synaptic plasticity and normalized emotional and cognitive behaviors in malnourished adult mice. Our data support a model where nutrition is a key environmental factor influencing the working synaptic range into adulthood, long after the end of the perinatal period. These findings have important implications for the identification of nutritional risk factors for disease and design of new treatments for the behavioral deficits associated with nutritional n-3 PUFA deficiency.SIGNIFICANCE STATEMENT In a mouse model mimicking n-3 PUFA dietary deficiency during adolescence and adulthood, we found strong increases in anxiety and anhedonia which lead to decreases in specific cognitive functions in adulthood. We found that endocannabinoid/mGlu5-mediated LTD and NMDAR-dependent LTP were lacking in adult n-3-deficient mice. Acute positive allosteric modulation of mGlu5 or inhibition of endocannabinoid degradation normalized behaviors and synaptic functions in n-3 PUFA-deficient adult mice. These findings have important implications for the identification of nutritional risk for disease and the design of new treatments for the behavioral deficits associated with nutritional n-3 PUFAs' imbalance.


Asunto(s)
Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Ácidos Grasos Omega-3/metabolismo , Lípidos/deficiencia , Trastornos Mentales/metabolismo , Plasticidad Neuronal , Receptor del Glutamato Metabotropico 5/metabolismo , Envejecimiento/metabolismo , Animales , Humanos , Masculino , Trastornos Mentales/prevención & control , Ratones , Ratones Endogámicos C57BL , Transmisión Sináptica , Regulación hacia Arriba/fisiología
18.
Front Behav Neurosci ; 10: 211, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27899885

RESUMEN

Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

19.
Neuropsychopharmacology ; 41(9): 2215-23, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26860202

RESUMEN

Social play behavior is a highly rewarding form of social interaction displayed by young mammals. Social play is important for neurobehavioral development and it has been found to be impaired in several developmental psychiatric disorders. In line with the rewarding properties of social play, we have previously identified the nucleus accumbens (NAc) as an important site of action for endocannabinoid and opioid modulation of this behavior. NAc dopamine has a well-known role in certain components of reward processes, such as incentive motivation. However, its contribution to the positive emotional aspects of social interactions is less clear. Therefore, we investigated the role of dopaminergic neurotransmission in the NAc in social play behavior in rats. We found that intra-NAc infusion of the dopamine releaser/reuptake inhibitor amphetamine increased social play behavior that was dependent on activation of both D1 and D2 dopamine receptors. This increase in social play behavior was mimicked by intra-NAc infusion of the dopamine receptor agonist apomorphine, but not of the dopamine reuptake inhibitor GBR-12909. Blockade of either D1 or D2 NAc dopamine receptors reduced social play in animals highly motivated to play as a result of longer social isolation before testing. Last, blockade of NAc dopamine receptors prevented the play-enhancing effects of endocannabinoid and opioid receptor stimulation. These findings demonstrate an important modulatory role of NAc dopaminergic neurotransmission in social play. Thus, functional activity in the mesolimbic dopamine pathway plays an important role in adaptive social development, whereas abnormal NAc dopamine function may underlie the social impairments observed in developmental psychiatric disorders such as autism, attention deficit hyperactivity disorder or early-onset schizophrenia.


Asunto(s)
Dopamina/fisiología , Núcleo Accumbens/fisiología , Conducta Social , Transmisión Sináptica , Anfetamina/administración & dosificación , Animales , Apomorfina/administración & dosificación , Antagonistas de los Receptores de Dopamina D2/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Masculino , Motivación/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Piperazinas/administración & dosificación , Ratas Wistar , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D2/agonistas
20.
Eur Neuropsychopharmacol ; 25(8): 1362-74, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25914159

RESUMEN

To date, our understanding of the relative contribution and potential overlapping roles of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of brain function and behavior is still limited. To address this issue, we investigated the effects of systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and adult rats. JZL195, administered at the dose of 0.01mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals. At both ages, these behavioral effects were antagonized by the CB1 cannabinoid receptor antagonist SR141716A and were associated with increased brain levels of 2-AG, but not AEA. Conversely, at the dose of 1mg/kg, JZL195 decreased general social exploration in adolescent rats without affecting social play behavior, and induced anxiogenic-like effects in the elevated plus-maze test both in adolescent and adult animals. These effects, mediated by activation of CB1 cannabinoid receptors, were paralleled by simultaneous increase in AEA and 2-AG levels in adolescent rats, and by an increase of only 2-AG levels in adult animals. These findings provide the first evidence for a role of 2-AG in social behavior, highlight the different contributions of AEA and 2-AG in the modulation of emotionality at different developmental ages and suggest that pharmacological inhibition of AEA and 2-AG hydrolysis is a useful approach to investigate the role of these endocannabinoids in neurobehavioral processes.


Asunto(s)
Ansiedad/metabolismo , Ácidos Araquidónicos/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Conducta Social , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Envejecimiento/psicología , Animales , Encéfalo/efectos de los fármacos , Moduladores de Receptores de Cannabinoides/farmacología , Carbamatos/farmacología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Masculino , Piperazinas/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Ratas Sprague-Dawley , Rimonabant
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...