RESUMEN
The escalating contamination caused by lead ions (Pb2âº) and its harmful effects on all life forms has raised global concerns. Certain microalgae thrive in metal mining sites characterized by low pH and high concentrations of Pb2âº, which are usually prohibitive for many microorganisms. Little is known about the mechanisms underlying the adaptation of such microalgae to these hostile conditions. In this study, we elucidated the adaptive strategies of the green microalga Micractinium belenophorum strain AUMW, isolated from a lead mining site, and its application for the removal of Pb+2. Results revealed that strain AUMW can efficiently tolerate up to 200 ppm of Pb+2 in an F/2 medium. Further experimental variables were optimized through response surface methodology (RSM), and 99.6 % removal of Pb2⺠was achieved. Novel adaptive responses of strain AUMW to high levels of Pb2⺠include: (i) activation of metal-protective response by modulation of quantum yield (F v /F m ) and non-photochemical quenching (NPQ) of photosystem II; (ii) extracellular silicification encapsulated cells of strain AUMW and altered cell morphology from oval to hexagonal; (iii) silicification prevented intracellular translocation of Pb+2; (iv) silicification boosted adsorption of Pb+2, thus enhanced its removal. This study offers new insights into the protective role of silicification in green microalgae and its potential for the removal of metals from metal-polluted sites, waste from energy storage battery industries, and spent batteries. It also provides a solid base to explore the genetic and metabolic pathways involved in the adaptation of strain AUMW to elevated levels of Pb+2.
RESUMEN
Per- and polyfluoroalkyl substances (PFAS) are recalcitrant synthetic organohalides known to negatively impact human health. Short-chain fluorotelomer alcohols are considered the precursor of various perfluorocarboxylic acids (PFCAs) in the environment. Their ongoing production and widespread detection motivate investigations of their biological transformation. Dietzia aurantiaca strain J3 was isolated from PFAS-contaminated landfill leachate using 6:2 fluorotelomer sulphonate (6:2 FTS) as a sulphur source. Resting cell experiments were used to test if strain J3 could transform fluorotelomer alcohols (6:2 and 4:2 FTOH). Strain J3 transformed fluorotelomer alcohols into PFCAs, polyfluorocarboxylic acids and transient intermediates. Over 6 days, 80 % and 58 % of 6:2 FTOH (0.1 mM) and 4:2 FTOH (0.12 mM) were degraded with 6.4 % and 14 % fluoride recovery respectively. Fluorotelomer unsaturated carboxylic acid (6:2 FTUCA) was the most abundant metabolite, accounting for 21 to 30 mol% of 6:2 FTOH (0.015 mM) applied on day zero. Glutathione (GSH) conjugates of 6:2/4:2 FTOH and 5:3 FTCA adducts were also structurally identified. Proteomics studies conducted to identify enzymes in the biotransformation pathway have revealed the role of various enzymes involved in ß oxidation. This is the first report of 6:2/4:2 FTOH glutathione conjugates and 5:3 FTCA adducts in prokaryotes, and the first study to explore the biotransformation of 4:2 FTOH by pure bacterial strain.
Asunto(s)
Biotransformación , Fluorocarburos , Proteómica , Fluorocarburos/metabolismo , Fluorocarburos/química , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo , Actinomycetales/metabolismo , Actinomycetales/enzimologíaRESUMEN
Nano zero-valent metals (nZVMs) have been extensively utilized for decades in the reductive remediation of groundwater contaminated with chlorinated organic compounds, owing to their robust reducing capabilities, simple application, and cost-effectiveness. Nevertheless, there remains a dearth of information regarding the efficient reductive defluorination of linear or branched per- and polyfluoroalkyl substances (PFASs) using nZVMs as reductants, largely due to the absence of appropriate catalysts. In this work, various soluble porphyrin ligands [[mesotetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·7H2O (CoTCPP), [[mesotetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[mesotetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)4·4H2O (CoTMpyP) have been explored for defluorination of PFASs in the presence of the nZn0 as reductant. Among these, the cationic CoTMpyP showed best defluorination efficiencies for br-perfluorooctane sulfonate (PFOS) (94%), br-perfluorooctanoic acid (PFOA) (89%), and 3,7-Perfluorodecanoic acid (PFDA) (60%) after 1 day at 70 °C. The defluorination rate constant of this system (CoTMpyP-nZn0) is 88-164 times higher than the VB12-nZn0 system for the investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature (55% for br-PFOS, 55% for br-PFOA and 25% for 3,7-PFDA after 1day), demonstrating the great potential of in-situ application. The effect of various solubilizing substituents, electron transfer flow and corresponding PFASs defluorination pathways in the CoTMpyP-nZn0 system were investigated by both experiments and density functional theory (DFT) calculations. SYNOPSIS: Due to the unavailability of active catalysts, available information on reductive remediation of PFAS by zero-valent metals (ZVMs) is still inadequate. This study explores the effective defluorination of various branched PFASs using soluble porphyrin-ZVM systems and offers a systematic approach for designing the next generation of catalysts for PFAS remediation.
Asunto(s)
Zinc , Zinc/química , Porfirinas/química , Fluorocarburos/química , Metaloporfirinas/química , Contaminantes Químicos del Agua/química , Oxidación-ReducciónRESUMEN
Anaerobic digestion is widely used to process and recover value from food waste. Commercial food waste anaerobic digestion facilities seek improvements in process efficiency to enable higher throughput. There is limited information on the composition of microbial communities in food waste prior to digestion, limiting rational exploitation of the catalytic potential of microorganisms in pretreatment processes. To address this knowledge gap, bacterial and fungal communities in food waste samples from a commercial anaerobic digestion facility were characterised over 3 months. The abundance of 16S rRNA bacterial genes was approximately five orders of magnitude higher than the abundance of the fungal intergenic spacer (ITS) sequence, suggesting the numerical dominance of bacteria over fungi in food waste before anaerobic digestion. Evidence for the mass proliferation of bacteria in food waste during storage prior to anaerobic digestion is presented. The composition of the bacterial community shows variation over time, but lineages within the Lactobacillaceae family are consistently dominant. Nitrogen content and pH are correlated to community variation. These findings form a foundation for understanding the microbial ecology of food waste and provide opportunities to further improve the throughput of anaerobic digestion.
Asunto(s)
Microbiota , Eliminación de Residuos , Anaerobiosis , Alimentos , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética , Reactores Biológicos/microbiología , Metano , Aguas del Alcantarillado/microbiologíaRESUMEN
Dehalobacterium formicoaceticum is recognized for its ability to anaerobically ferment dichloromethane (DCM), and a catabolic model has recently been proposed. D. formicoaceticum is currently the only axenic representative of its class, the Dehalobacteriia, according to the Genome Taxonomy Database. However, substantial additional diversity has been revealed in this lineage through culture-independent exploration of anoxic habitats. Here we performed a comparative analysis of 10 members of the Dehalobacteriia, representing three orders, and infer that anaerobic DCM degradation appears to be a recently acquired trait only present in some members of the order Dehalobacteriales. Inferred traits common to the class include the use of amino acids as carbon and energy sources for growth, energy generation via a remarkable range of putative electron-bifurcating protein complexes and the presence of S-layers. The ability of D. formicoaceticum to grow on serine without DCM was experimentally confirmed and a high abundance of the electron-bifurcating protein complexes and S-layer proteins was noted when this organism was grown on DCM. We suggest that members of the Dehalobacteriia are low-abundance fermentative scavengers in anoxic habitats.
Asunto(s)
Carbono , Firmicutes , Fermentación , AnaerobiosisRESUMEN
Inhalation of asbestos fibres can cause lung inflammation and the later development of asbestosis, lung cancer, and mesothelioma, and the use of asbestos is banned in many countries. In most countries, large amounts of asbestos exists within building stock, buried in landfills, and in contaminated soil. Mechanical, thermal, and chemical treatment options do exist, but these are expensive, and they are not effective for contaminated soil, where only small numbers of asbestos fibres may be present in a large volume of soil. Research has been underway for the last 20 years into the potential use of microbial action to remove iron and other metal cations from the surface of asbestos fibres to reduce their toxicity. To access sufficient iron for metabolism, many bacteria and fungi produce organic acids, or iron-chelating siderophores, and in a growing number of experiments these have been found to degrade asbestos fibres in vitro. This paper uses the internal transcribed spacer (ITS) and 16S amplicon sequencing to investigate the fungal and bacterial diversity found on naturally-occurring asbestos minerals, asbestos-containing building materials, and asbestos-contaminated soils with a view to later selectively culturing promising species, screening them for siderophore production, and testing them with asbestos fibres in vitro. After filtering, 895 ITS and 1265 16S amplicon sequencing variants (ASVs) were detected across the 38 samples, corresponding to a range of fungal, bacteria, cyanobacterial, and lichenized fungal species. Samples from Auckland (North Island, New Zealand) asbestos cement, Auckland asbestos-contaminated soils, and raw asbestos rocks from Kahurangi National Park (South Island, New Zealand) were comprised of very different microbial communities. Five of the fungal species detected in this study are known to produce siderophores.
Asunto(s)
Amianto , Sideróforos , Nueva Zelanda , Hierro/metabolismo , Bacterias/genética , Bacterias/metabolismo , SueloRESUMEN
Recent discoveries of isoprene-metabolizing microorganisms suggest they might play an important role in the global isoprene budget. Under anoxic conditions, isoprene can be used as an electron acceptor and is reduced to methylbutene. This study describes the proteogenomic profiling of an isoprene-reducing bacterial culture to identify organisms and genes responsible for the isoprene hydrogenation reaction. A metagenome-assembled genome (MAG) of the most abundant (89% relative abundance) lineage in the enrichment, Acetobacterium wieringae, was obtained. Comparative proteogenomics and reverse transcription-PCR (RT-PCR) identified a putative five-gene operon from the A. wieringae MAG upregulated during isoprene reduction. The operon encodes a putative oxidoreductase, three pleiotropic nickel chaperones (2 × HypA, HypB), and one 4Fe-4S ferredoxin. The oxidoreductase is proposed as the putative isoprene reductase with a binding site for NADH, flavin adenine dinucleotide (FAD), two pairs of canonical [4Fe-4S] clusters, and a putative iron-sulfur cluster site in a Cys6-bonding environment. Well-studied Acetobacterium strains, such as A. woodii DSM 1030, A. wieringae DSM 1911, or A. malicum DSM 4132, do not encode the isoprene-regulated operon but encode, like many other bacteria, a homolog of the putative isoprene reductase (~47 to 49% amino acid sequence identity). Uncharacterized homologs of the putative isoprene reductase are observed across the Firmicutes, Spirochaetes, Tenericutes, Actinobacteria, Chloroflexi, Bacteroidetes, and Proteobacteria, suggesting the ability of biohydrogenation of unfunctionalized conjugated doubled bonds in other unsaturated hydrocarbons. IMPORTANCE Isoprene was recently shown to act as an electron acceptor for a homoacetogenic bacterium. The focus of this study is the molecular basis for isoprene reduction. By comparing a genome from our isoprene-reducing enrichment culture, dominated by Acetobacterium wieringae, with genomes of other Acetobacterium lineages that do not reduce isoprene, we shortlisted candidate genes for isoprene reduction. Using comparative proteogenomics and reverse transcription-PCR we have identified a putative five-gene operon encoding an oxidoreductase referred to as putative isoprene reductase.
Asunto(s)
Acetobacterium , Oxidorreductasas , Oxidorreductasas/genética , Acetobacterium/genética , Butadienos/metabolismoRESUMEN
Dichloromethane (DCM; CH2Cl2) is a widespread pollutant with anthropogenic and natural sources. Anaerobic DCM-dechlorinating bacteria use the Wood-Ljungdahl pathway, yet dechlorination reaction mechanisms remain unclear and the enzyme(s) responsible for carbon-chlorine bond cleavage have not been definitively identified. Of the three bacterial taxa known to carry out anaerobic dechlorination of DCM, 'Candidatus Formimonas warabiya' strain DCMF is the only organism that can also ferment non-chlorinated substrates, including quaternary amines (i.e., choline and glycine betaine) and methanol. Strain DCMF is present within enrichment culture DFE, which was derived from an organochlorine-contaminated aquifer. We utilized the metabolic versatility of strain DCMF to carry out comparative metaproteomics of cultures grown with DCM or glycine betaine. This revealed differential abundance of numerous proteins, including a methyltransferase gene cluster (the mec cassette) that was significantly more abundant during DCM degradation, as well as highly conserved amongst anaerobic DCM-degrading bacteria. This lends strong support to its involvement in DCM dechlorination. A putative glycine betaine methyltransferase was also discovered, adding to the limited knowledge about the fate of this widespread osmolyte in anoxic subsurface environments. Furthermore, the metagenome of enrichment culture DFE was assembled, resulting in five high quality and two low quality draft metagenome-assembled genomes. Metaproteogenomic analysis did not reveal any genes or proteins for utilization of DCM or glycine betaine in the cohabiting bacteria, supporting the previously held idea that they persist via necromass utilization.
RESUMEN
Vitamin B12 (VB12) has been reported to degrade PFOS in the presence of TiIII citrate at 70 °C. Porphyrin-based catalysts have emerged as VB12 analogues and have been successfully used in various fields of research due to their interesting structural and electronic properties. However, there is inadequate information on the use of these porphyrin-based metal complexes in the defluorination of PFOS. We have therefore explored a series of porphyrin-based metal complexes for the degradation of PFOS. CoII-5,10,15,20-tetraphenyl-21H,23H-porphyrin (CoII-TPP), CoII-5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphyrin (CoII-M-TPP), and CoIII-M-TPP exhibited efficient reductive defluorination of the branched PFOS. Within 5-8 h, these compounds achieved the same level of PFOS defluorination as VB12 achieved in 7-10 days. For branched isomers, the specific removal rate of the CoII-TPP-TiIII citrate system is 64-105 times higher than that for VB12-TiIII citrate. Moreover, the CoII-TPP-TiIII citrate system displayed efficient (51%) defluorination for the branched PFOS (br-PFOS) in 1 day even at room temperature (25 °C). The effects of the iron and cobalt metal centers, reaction pH, and several reductants (NaBH4, nanosized zerovalent zinc (nZn0), and TiIII citrate) were systematically investigated. Based on the analysis of the products and previously published reports, a new possible defluorination pathway of branched PFOS is also proposed.
Asunto(s)
Complejos de Coordinación , Porfirinas , Catálisis , Ácido Cítrico/química , Isomerismo , Porfirinas/químicaRESUMEN
Polychlorinated dibenzo-p-dioxins and furans (PCDD/F) are some of the most environmentally recalcitrant and toxic compounds. They occur naturally and as by-products of anthropogenic activity. Sydney Harbour Estuary (Sydney, Australia), is heavily contaminated with PCDD/F. Analysis of sediment cores revealed that the contamination source area in Homebush Bay continues to have one of the highest levels of PCDD/F contamination in the world (5207 pg WHO-TEQ g-1) with >50% of the toxicity attributed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), the most toxic PCDD/F congener. Comparison of congener profiles at the contamination source area with surrounding bays and historical data provided evidence for the attenuation of 2,3,7,8-TCDD and other congeners at the source area. This finding was supported by the detection of di-, mono- and unchlorinated dibenzo-p-dioxin. Microbial community analysis of sediments by 16S rRNA amplicon sequencing revealed an abundance of lineages from the class Dehalococcoidia (up to 15% of the community), including the genus Dehalobium (up to 0.5%). Anaerobic seawater enrichment cultures using perchloroethene as more biologically available growth substrate enriched the Dehalobium population by more than six-fold. The enrichment culture then proved capable of reductively dechlorinating 2,3,7,8-TCDD to 2,3,7-TriCDD and octachlorodibenzo-p-dibenzodioxin (OCDD) to hepta and hexa congeners. This work is the first to show microbial reductive dehalogenation of 2,3,7,8-TCDD with a bacterium from outside the Dehalococcoides genus, and one of only a few that demonstrates PCDD/F dechlorination in a marine environment.
Asunto(s)
Benzofuranos , Dioxinas , Dibenzodioxinas Policloradas , Bahías , Benzofuranos/análisis , Dibenzofuranos Policlorados/análisis , Dioxinas/análisis , Estuarios , Dibenzodioxinas Policloradas/análisis , ARN Ribosómico 16S/genéticaRESUMEN
The polyfluorinated alkyl substance 6:2 fluorotelomer sulfonate (6:2 FTS) has been detected in diverse environments impacted by aqueous film-forming foams used for firefighting. In this study, a bacterial strain (J3) using 6:2 FTS as a sulfur source was isolated from landfill leachate previously exposed to polyfluoroalkyl substances in New South Wales, Australia. Strain J3 shares 99.9% similarity with the 16S rRNA gene of Dietzia aurantiaca CCUG 35676T. Genome sequencing yielded a draft genome sequence of 37 contigs with a G + C content of 69.7%. A gene cluster related to organic sulfur utilisation and assimilation was identified, that included an alkanesulfonate monooxygenase component B (ssuD), an alkanesulfonate permease protein (ssuC), an ABC transporter (ssuB), and an alkanesulfonate-binding protein (ssuA). Proteomic analyses comparing strain J3 cultures using sulfate and 6:2 FTS as sulfur source indicated that the ssu gene cluster was involved in 6:2 FTS biodegradation. Upregulated proteins included the SsuD monooxygenase, the SsuB transporter, the ABC transporter permease (SsuC), an alkanesulfonate-binding protein (SsuA), and a nitrilotriacetate monooxygenase component B. 6:2 Fluorotelomer carboxylic acid (6:2 FTCA) and 6:2 fluorotelomer unsaturated acid (6:2 FTUA) were detected as early degradation products in cultures (after 72 h) while 5:3 fluorotelomer acid (5:3 FTCA), perfluorohexanoic acid (PFHxA) and perfluoropentanoic acid (PFPeA) were detected as later degradation products (after 168 h). This work provides biochemical and metabolic insights into 6:2 FTS biodegradation by the Actinobacterium D. aurantiaca J3, informing the fate of PFAS in the environment.
Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Transportadoras de Casetes de Unión a ATP/metabolismo , Actinobacteria , Alcanosulfonatos/análisis , Biotransformación , Fluorocarburos/análisis , Proteínas de Transporte de Membrana/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteómica , ARN Ribosómico 16S/genética , Azufre/metabolismo , Contaminantes Químicos del Agua/análisisRESUMEN
Synthetic biology has potential spaceflight applications yet few if any studies have attempted to translate Earth-based synthetic biology tools into spaceflight. An exogenously inducible biological circuit for protein production in Arabidopsis thaliana, pX7-AtPDSi (Guo et al. 2003), was flown to ISS and functionally investigated. Seedlings were grown in a custom built 1.25 U plant greenhouse. Images recorded during the experiment show that leaves of pX7-AtPDSi seedlings photobleached as designed while wild type Col-0 leaves did not, which reveals that the synthetic circuit led to protein production during spaceflight. Polymerase chain reaction analysis post-flight also confirms that the Cre/LoxP (recombination system) portions of the circuit were functional in spaceflight. The subcomponents of the biological circuit, estrogen-responsive transcription factor XVE, Cre/LoxP DNA recombination system, and RNAi post-transcriptional gene silencing system now have flight heritage and can be incorporated in future designs for space applications. To facilitate future plant studies in space, the full payload design and manufacturing files are made available.
Asunto(s)
Arabidopsis/metabolismo , Vuelo Espacial , Biología Sintética/métodos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estradiol , Integrasas , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN de Planta , Receptores de Estrógenos/genética , Factores de TranscripciónRESUMEN
Humans are increasingly dependent on engineered landscapes to minimize negative health impacts of water consumption. Managed aquifer recharge (MAR) systems, such as river and lake bank filtration, surface spreading or direct injection into the aquifer have been used for decades for water treatment and storage. Microbial and sorptive processes in these systems are effective for the attenuation of many emerging contaminants including trace organic chemicals such as pharmaceuticals and personal care products. Recent studies showed a superior efficiency of trace organic chemical biotransformation by incumbent communities of microorganisms under oxic and carbon-limited (oligotrophic) conditions. This study sought to identify features of bacterial genomes that are predictive of trophic strategy in this water management context. Samples from a pilot scale managed aquifer recharge system with regions of high and low carbon concentration, were used to generate a culture collection from which oligotrophic and copiotrophic bacteria were categorized. Genomic markers linked to either trophic strategy were used to develop a Bayesian network model that can infer prevailing carbon conditions in MAR systems from metagenomic data.
Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Teorema de Bayes , Biodegradación Ambiental , Humanos , Compuestos Orgánicos , Contaminantes Químicos del Agua/análisisRESUMEN
Dichloromethane (DCM; CH2Cl2) is a toxic groundwater pollutant that also has a detrimental effect on atmospheric ozone levels. As a dense non-aqueous phase liquid, DCM migrates vertically through groundwater to low redox zones, yet information on anaerobic microbial DCM transformation remains scarce due to a lack of cultured organisms. We report here the characterisation of DCMF, the dominant organism in an anaerobic enrichment culture (DFE) capable of fermenting DCM to the environmentally benign product acetate. Stable carbon isotope experiments demonstrated that the organism assimilated carbon from DCM and bicarbonate via the Wood-Ljungdahl pathway. DCMF is the first anaerobic DCM-degrading population also shown to metabolise non-chlorinated substrates. It appears to be a methylotroph utilising the Wood-Ljungdahl pathway for metabolism of methyl groups from methanol, choline, and glycine betaine. The flux of these substrates from subsurface environments may either directly (DCM, methanol) or indirectly (choline, glycine betaine) affect the climate. Community profiling and cultivation of cohabiting taxa in culture DFE without DCMF suggest that DCMF is the sole organism in this culture responsible for substrate metabolism, while the cohabitants persist via necromass recycling. Genomic and physiological evidence support placement of DCMF in a novel genus within the Peptococcaceae family, 'Candidatus Formimonas warabiya'.
Asunto(s)
Cloruro de Metileno , Peptococcaceae , Biodegradación Ambiental , Carbono , Isótopos de Carbono/análisisRESUMEN
Ceric(iv) ammonium nitrate (CAN) in aqueous medium acts as an excellent precipitating agent for perfluorooctanesulfonic acid (PFOS). The Ce(iv) center plays a crucial role. Interestingly, Ce(iii) chloride showed much less effectiveness under similar conditions. The efficacy of CAN was reduced upon changing the substrate to perfluorooctanoic acid (PFOA).
RESUMEN
Cerium Ce(III) is one of the major pollutants contained in wastewater generated during Ce(III) mining. However, the effect(s) of Ce(III) on the functional genera responsible for removing nitrogen biologically from wastewater has not been studied and reported. In this study, the effects of Ce(III) on aspects of partial-nitritation-(PN) process including ammonia oxidation rate (AOR), process kinetics, and microbial activities were investigated. It was found that the effect of dosing Ce(III) in the PN system correlated strongly with the AOR. Compared to the control, batch assays dosed with 5 mg/L Ce(III) showed elevated PN efficiency of about 121%, an indication that maximum biological response was feasible upon Ce(III) dose. It was also found that, PN performance was not adversely affected, given that Ce(III) dose was ≤20 mg/L. Process kinetics investigated also suggested that the maximum Ce(III) dose without any visible inhibition to the activities of ammonium oxidizing bacteria was 1.37 mg/L, but demonstrated otherwise when Ce(III) dose exceeded 5.63 mg/L. Compared to the control, microbes conducted efficient Ce(III) removal (averaged 98.66%) via biosorption using extracellular polymeric substances (EPS). Notably, significant deposits of Ce(III) was found within the EPS produced as revealed by SEM, EDX, CLSM and FTIR. 2-dimensional correlation infrared-(2DCOS-IR) revealed ester group (uronic acid) as a major organic functional group that promoted Ce(III) removal. Excitation-emission matrix-(EEM) spectrum and 2DCOS-IR suggested the dominance of Fulvic acid, hypothesized to have promoted the performance of the PN process under Ce(III) dosage.
Asunto(s)
Cerio/toxicidad , Nitrificación/efectos de los fármacos , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad , Compuestos de Amonio , Bacterias , Reactores Biológicos/microbiología , Minería , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales/microbiologíaRESUMEN
Biofilms are assemblages of microorganisms attached to each other, or to a surface, and encased in a protective, self-produced matrix. Such associations are now recognized as the predominant microbial growth mode. The physiology of cells in biofilms differs from that of the planktonic cells on which most research has been conducted. Consequently, there are significant gaps in our knowledge of the biofilm lifestyle. Filling this gap is particularly important, given that biofilm cells may respond differently to antibiotics than do planktonic cells of the same species. Understanding the effects of antibiotics on biofilms is of paramount importance for clinical practice due to the increased levels of antibiotic resistance and resistance dissemination in biofilms. From a wider environmental perspective antibiotic exposure can alter the ecology of biofilms in nature, and hence disrupt ecosystems. Biofilm cells display increased resilience toward antibiotics. This resilience is often explained by mechanisms and traits such as decreased antibiotic penetration, metabolically inactive persister cells, and intrinsic resistance by members of the biofilm community. Together, these factors suggest that cells in biofilms are often exposed to subinhibitory concentrations of antimicrobial agents. Here we discuss how cells in biofilms are affected by the presence of antibiotics at subinhibitory concentrations, and the possible ramifications of such secondary effects for healthcare and the environment.