Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 15(6): 1929-1941, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38911163

RESUMEN

In the last decades, carbonic anhydrases (CAs) have become the top investigated innovative pharmacological targets and, in particular, isoforms IX and XII have been widely studied due to the evidence of their overexpression in hypoxic tumors. The frantic race to find new anticancer agents places the quick preparation of large libraries of putative bioactive compounds as the basis of a successful drug discovery and development programme. In this context, multi-component and, in general, one-step reactions are becoming very popular and, among them, Biginelli's reaction gave clean and easy-to-isolate products. Thus, we synthesized a series of Biginelli's products (10-17a-b) and similar derivatives (20-21) bearing the benzenesulfonamide moiety, which is known to inhibit CA enzymes. Through the stopped-flow technique, we were able to assess their ability to inhibit the targeted CAs IX and XII in the nanomolar range with promising selectivity over the physiologically relevant isoforms I and II. Crystallography studies and docking simulations helped us to gain insight into the interaction patterns established in the enzyme-inhibitor complex. From a chemical similarity-based screening of in-house libraries of compounds, a diphenylpyrimidine (23) emerged. The surprisingly potent inhibitory activity of 23 for CAs IX and XII along with its strong antiproliferative effect on two (triple-negative breast cancer MDA-MB-231 and glioblastoma U87MG) cell lines laid the foundation for further investigation, again confirming the key role of CAs in cancer.

2.
Viruses ; 16(5)2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38793572

RESUMEN

Non-structural protein 1 (Nsp1) represents one of the most crucial SARS-CoV-2 virulence factors by inhibiting the translation of host mRNAs and promoting their degradation. We selected naturally occurring virus lineages with specific Nsp1 deletions located at both the N- and C-terminus of the protein. Our data provide new insights into how Nsp1 coordinates these functions on host and viral mRNA recognition. Residues 82-85 in the N-terminal part of Nsp1 likely play a role in docking the 40S mRNA entry channel, preserving the inhibition of host gene expression without affecting cellular mRNA decay. Furthermore, this domain prevents viral mRNAs containing the 5'-leader sequence to escape translational repression. These findings support the presence of distinct domains within the Nsp1 protein that differentially modulate mRNA recognition, translation and turnover. These insights have implications for the development of drugs targeting viral proteins and provides new evidences of how specific mutations in SARS-CoV-2 Nsp1 could attenuate the virus.


Asunto(s)
ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Animales , Humanos , Chlorocebus aethiops , COVID-19/virología , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , Eliminación de Secuencia , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
3.
Drug Dev Res ; 85(1): e22158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349262

RESUMEN

Glioblastoma multiforme (GBM) is one of the most aggressive malignancies with a high recurrence rate and poor prognosis. Theranostic, combining therapeutic and diagnostic approaches, arises as a successful strategy to improve patient outcomes through personalized medicine. Src is a non-receptor tyrosine kinase (nRTK) whose involvement in GBM has been extensively demonstrated. Our previous research highlighted the effectiveness of the pyrazolo[3,4-d]pyrimidine SI306 and its more soluble prodrug CMP1 as Src inhibitors both in in vitro and in vivo GBM models. In this scenario, we decided to develop a theranostic prodrug of SI306, ProSI-DOTA(68 Ga) 1, which was designed to target GBM cells after hydrolysis and follow-up on the disease's progression and improve the therapy's outcome. First, the corresponding nonradioactive prodrug 2 was tested to evaluate its ADME profile and biological activity. It showed good metabolic stability, no inhibition of CYP3A4, suboptimal aqueous solubility, and slight gastrointestinal and blood-brain barrier passive permeability. Compound 2 exhibited a drastic reduction of cell vitality after 72 h on two different GBM cell lines (GL261 and U87MG). Then, 2 was subjected to complexation with the radionuclide Gallium-68 to give ProSI-DOTA(68 Ga) 1. The cellular uptake of 1 was evaluated on GBM cells, highlighting a slight but significant time-dependent uptake. The data obtained from our preliminary studies reflect the physiochemical properties of 1. The use of an alternative route of administration, such as the intranasal route, could overcome the physiochemical limitations and enhance the pharmacokinetic properties of 1, paving the way for its future development.


Asunto(s)
Glioblastoma , Profármacos , Humanos , Medicina de Precisión , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Barrera Hematoencefálica , Línea Celular , Profármacos/farmacología
4.
RSC Med Chem ; 15(2): 720-732, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38389870

RESUMEN

ATP-binding cassette (ABC) transporters are a large family of proteins involved in membrane transport of a wide variety of substrates. Among them, ABCB1, also known as MDR-1 or P-glycoprotein (P-gp), is the most characterized. By exporting xenobiotics out of the cell, P-gp activity can affect the ADME properties of several drugs. Moreover, P-gp has been found to mediate multidrug resistance in cancer cells. Thus, the inhibition of P-gp activity may lead to increased absorption and/or intracellular accumulation of co-administered drugs, enhancing their effectiveness. Using the human-mouse chimeric cryoEM 3D structure of the P-gp in the inhibitor-bound intermediate form (PDBID: 6qee), approximately 200 000 commercially available natural compounds from the ZINC database were virtually screened. To build a model able to discriminate between substrate and inhibitors, two datasets of compounds with known activity, including P-gp inhibitors, substrates, and inactive molecules were also docked. The best docking pose of selected substrates and inhibitors were used to generate 3D common feature pharmacophoric models that were combined with the Autodock Vina binding energy values to prioritize compounds for visual inspection. With this consensus approach, 13 potential candidates were identified and then tested for their ability to inhibit P-gp, using zosuquidar, a third generation P-gp inhibitor, as a reference drug. Eight compounds were found to be active with 6 of them having an IC50 lower than 5 µM in a membrane-based ATPase activity assay. Moreover, the P-gp inhibitory activity was also confirmed by two different cell-based in vitro methods. Both retrospective and prospective results demonstrate the ability of the combined structure-based pharmacophore modeling and docking-based virtual screening approach to predict novel hit compounds with inhibitory activity toward P-gp. The resulting chemical scaffolds could serve as inspiration for the optimization of novel and more potent P-gp inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...