Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0301913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38787834

RESUMEN

Small lentic water bodies are important emitters of methane (CH4) and carbon dioxide (CO2), but the processes regulating their dynamics and susceptibility to human-induced stressors are not fully understood. Bioturbation by chironomid larvae has been proposed as a potentially important factor controlling the dynamics of both gases in aquatic sediments. Chironomid abundance can be affected by the application of biocides for mosquito control, such as Bti (Bacillus thuringiensis var. israelensis). Previous research has attributed increases in CH4 and CO2 emissions after Bti application to reduced bioturbation by chironomids. In this study, we separately tested the effect of chironomid bioturbation and Bti addition on CH4 production and emission from natural sediments. In a set of 15 microcosms, we compared CH4 and CO2 emission and production rates with high and low densities of chironomid larvae at the bioturbating stage, and standard and five times (5x) standard Bti dose, with control sediments that contained neither chironomid larvae nor Bti. Regardless of larvae density, chironomid larvae did not affect CH4 nor CO2 emission and production of the sediment, although both rates were more variable in the treatments with organisms. 5xBti dosage, however, led to a more than three-fold increase in CH4 and CO2 production rates, likely stimulated by bioavailable dissolved carbon in the Bti excipient and priming effects. Our results suggest weak effects of bioturbating chironomid larvae on the CH4 and CO2 dynamics in aquatic ecosystems. Furthermore, our results point out towards potential functional implications of Bti for carbon cycling beyond those mediated by changes in the macroinvertebrate community.


Asunto(s)
Dióxido de Carbono , Chironomidae , Agua Dulce , Sedimentos Geológicos , Larva , Metano , Animales , Chironomidae/metabolismo , Chironomidae/efectos de los fármacos , Chironomidae/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Larva/efectos de los fármacos , Larva/metabolismo , Metano/metabolismo , Sedimentos Geológicos/química , Bacillus thuringiensis/metabolismo , Desinfectantes/farmacología , Control de Mosquitos/métodos , Culicidae/efectos de los fármacos , Culicidae/metabolismo
2.
Environ Sci Technol ; 58(19): 8360-8371, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701334

RESUMEN

Artificial channels, common features of inland waters, have been suggested as significant contributors to methane (CH4) and carbon dioxide (CO2) dynamics and emissions; however, the magnitude and drivers of their CH4 and CO2 emissions (diffusive and ebullitive) remain unclear. They are characterized by reduced flow compared to the donor river, which results in suspended organic matter (OM) accumulation. We propose that in such systems hydrological controls will be reduced and OM accumulation will control emissions by promoting methane production and outgassing. Here, we monitored summertime CH4 and CO2 concentrations and emissions on six newly constructed river-fed artificial channels, from bare riparian mineral soil to lotic channels, under two distinct flow regimes. Chamber-based fluxes were complemented with hydrology, total fluxes (diffusion + ebullition), and suspended OM accumulation assessments. During the first 6 weeks after the flooding, inflowing riverine water dominated the emissions over in-channel contributions. Afterwards, a substantial accumulation of riverine suspended OM (≥50% of the channel's volume) boosted in-channel methane production and led to widespread ebullition 10× higher than diffusive fluxes, regardless of the flow regime. Our finding suggests ebullition as a dominant pathway in these anthropogenic systems, and thus, their impact on regional methane emissions might have been largely underestimated.


Asunto(s)
Gases de Efecto Invernadero , Hidrología , Metano , Ríos/química , Dióxido de Carbono , Monitoreo del Ambiente
3.
Sci Total Environ ; 912: 168836, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38016568

RESUMEN

River ecosystems are heavily impacted by multiple stressors, where effects can cascade downstream of point sources. However, a spatial approach to assess the effects of multiple stressors is missing. We assessed the local and downstream effects on litter decomposition, and associated invertebrate communities of two stressors: flow reduction and artificial light at night (ALAN). We used an 18-flow-through mesocosm system consisting of two tributaries, where we applied the stressors, merging in a downstream section. We assessed the changes in decomposition rate and invertebrate community structure in leaf bags. We found no effect of ALAN or its interaction with flow reduction on the litter decomposition or the invertebrate community in the tributaries. Flow reduction alone led to a 14.8 % reduction in decomposition rate in the tributaries. We recorded no effect of flow reduction on the macroinvertebrates community composition in the litter bags. We also observed no effects of the spatial arrangement of the stressors on the litter decomposition and macroinvertebrate community structure downstream. Overall, our results suggest the impact of stressors on litter decomposition and macroinvertebrate communities remained local in our experiment. Our work thus calls for further studies to identify the mechanisms and the conditions under which spatial effects dominate over local processes.


Asunto(s)
Ecosistema , Contaminación Lumínica , Animales , Invertebrados , Ríos/química , Hojas de la Planta/química
4.
Sci Total Environ ; 889: 164278, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211117

RESUMEN

Climate warming can lead to a replacement of species that favour cold temperatures by species that favour warm temperatures. However, the implications of such thermic shifts for the functioning of ecosystems remain poorly understood. Here, we used stream macroinvertebrate biological and ecological traits to quantify the relative contribution of cold, intermediate and warm temperature-adapted taxa to changes in community functional diversity (FD) using a dataset of 3781 samples collected in Central Europe over 25 years, from 1990 to 2014. Our analyses indicated that functional diversity of stream macroinvertebrate communities increased over the study period. This gain was driven by a net 39 % increase in the richness of taxa that favour intermediate temperatures, which comprise the highest share in the community, and to a 97 % increase in the richness of taxa that favour warm temperatures. These warm temperature-adapted taxa displayed a distinct and more diverse suite of functional traits compared to the cold temperature-adapted group and thus contributed disproportionately to local FD on a per-taxon basis. At the same time, taxonomic beta-diversity declined significantly within each thermal group, in association with increasing local taxon richness. This study shows that over recent decades, small low-mountain streams in Central Europe have experienced a process of thermophilization and increasing functional diversity at local scales. However, a progressive homogenisation occurred at the regional scale, with communities converging towards similar taxonomic composition. As the reported increase in local functional diversity can be attributed mostly to the intermediate temperature-adapted taxa and a few expanding warm temperature-adapted taxa, these patterns could mask more subtle loss of sensitive cold temperature-adapted taxa with irreplaceable functional traits. In light of increasing climate warming, preservation of cold habitat refuges, should be considered a priority in river conservation.


Asunto(s)
Ecosistema , Invertebrados , Animales , Ríos , Europa (Continente) , Temperatura
5.
PeerJ ; 11: e15336, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250705

RESUMEN

Background: Integrative taxonomy is becoming ever more significant in biodiversity research as scientists are tackling increasingly taxonomically challenging groups. Implementing a combined approach not only guarantees more accurate species identification, but also helps overcome limitations that each method presents when applied on its own. In this study, we present one application of integrative taxonomy for the highly abundant and particularly diverse fly taxon Chironomidae (Diptera). Although non-biting midges are key organisms in merolimnic systems, they are often cast aside in ecological surveys because they are very challenging to identify and extremely abundant. Methods: Here, we demonstrate one way of applying integrative methods to tackle this highly diverse taxon. We present a three-level subsampling method to drastically reduce the workload of bulk sample processing, then apply morphological and molecular identification methods in parallel to evaluate species diversity and to examine inconsistencies across methods. Results: Our results suggest that using our subsampling approach, identifying less than 10% of a sample's contents can reliably detect >90% of its diversity. However, despite reducing the processing workload drastically, the performance of our taxonomist was affected by mistakes, caused by large amounts of material. We conducted misidentifications for 9% of vouchers, which may not have been recovered had we not applied a second identification method. On the other hand, we were able to provide species information in cases where molecular methods could not, which was the case for 14% of vouchers. Therefore, we conclude that when wanting to implement non-biting midges into ecological frameworks, it is imperative to use an integrative approach.


Asunto(s)
Chironomidae , Animales , Código de Barras del ADN Taxonómico/métodos , Biodiversidad
6.
Environ Toxicol Chem ; 42(6): 1346-1358, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946335

RESUMEN

Anthropogenic stressors can affect the emergence of aquatic insects. These insects link aquatic and adjacent terrestrial food webs, serving as high-quality subsidy to terrestrial consumers, such as spiders. While previous studies have demonstrated that changes in the emergence biomass and timing may propagate across ecosystem boundaries, the physiological consequences of altered subsidy quality for spiders are largely unknown. We used a model food chain to study the potential effects of subsidy quality: Tetragnatha spp. were exclusively fed with emergent Chironomus riparius cultured in the absence or presence of either copper (Cu), Bacillus thuringiensis var. israelensis (Bti), or a mixture of synthetic pesticides paired with two basal resources (Spirulina vs. TetraMin®) of differing quality in terms of fatty acid (FA) composition. Basal resources shaped the FA profile of chironomids, whereas their effect on the FA profile of spiders decreased, presumably due to the capacity of both chironomids and spiders to modify (dietary) FA. In contrast, aquatic contaminants had negligible effects on prey FA profiles but reduced the content of physiologically important polyunsaturated FAs, such as 20:4n-6 (arachidonic acid) and 20:5n-3 (eicosapentaenoic acid), in spiders by approximately 30% in Cu and Bti treatments. This may have contributed to the statistically significant decline (40%-50%) in spider growth. The observed effects in spiders are likely related to prey nutritional quality because biomass consumption by spiders was, because of our experimental design, constant. Analyses of additional parameters that describe the nutritional quality for consumers such as proteins, carbohydrates, and the retention of contaminants may shed further light on the underlying mechanisms. Our results highlight that aquatic contaminants can affect the physiology of riparian spiders, likely by altering subsidy quality, with potential implications for terrestrial food webs. Environ Toxicol Chem 2023;42:1346-1358. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ecosistema , Arañas , Animales , Arañas/química , Ríos/química , Cadena Alimentaria , Insectos
7.
Bull Environ Contam Toxicol ; 110(4): 70, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36959482

RESUMEN

The biocide Bacillus thuringiensis var. israelensis (Bti) is applied to wetlands to control nuisance by mosquitoes. Amphibians inhabiting these wetlands can be exposed to Bti multiple times, potentially inducing oxidative stress in developing tadpoles. For biochemical stress responses, ambient water temperature plays a key role. Therefore, we exposed tadpoles of the European common frog (Rana temporaria) three times to field-relevant doses of Bti in outdoor floodplain pond mesocosms (FPM) under natural environmental conditions. We sampled tadpoles after each Bti application over the course of a 51-day experiment (April to June 2021) and investigated the activity of the glutathione-S-transferase (GST) and protein carbonyl content as a measure for detoxification activity and oxidative damage. GST activity increased over the course of the experiment likely due to a general increase of water temperature. We did not observe an effect of Bti on either of the investigated biomarkers under natural ambient temperatures. However, Bti-induced effects may be concealed by the generally low water temperatures in our FPMs, particularly at the first application in April, when we expected the highest effect on the most sensitive early stage tadpoles. In light of the global climate change, temperature-related effects of pesticides and biocides on tadpoles should be carefully monitored - in particular since they are known as one of the factors driving the worldwide decline of amphibian populations.


Asunto(s)
Bacillus thuringiensis , Desinfectantes , Animales , Rana temporaria , Control de Mosquitos , Larva , Desinfectantes/farmacología , Estanques , Carbonilación Proteica , Glutatión Transferasa , Agua
8.
Ecology ; 104(5): e4023, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36890684

RESUMEN

Resource quantity and quality can differ between adjacent ecosystems, and these differences can impact subsidies exchanged between ecosystems. The quantity and quality of subsidies are rapidly changing in response to stressors associated with global environmental change, but while we have models to predict the effects of changes in subsidy quantity, we currently lack models to predict the effects of changes in subsidy quality on recipient ecosystem functioning. We developed a novel model to predict the effects of subsidy quality on recipient ecosystem biomass distribution, recycling, production, and efficiency. We parameterized the model for a case study of a riparian ecosystem subsidized by pulsed emergent aquatic insects. In this case study we focused on a common measure of subsidy quality that differs between riparian and aquatic ecosystems: the higher content of long-chain polyunsaturated fatty acids (PUFAs) in aquatic ecosystems. We analyzed how changes in the PUFA concentration of aquatic subsidies affect the dynamics in biomass stocks and functions of the riparian ecosystem. We also conducted a global sensitivity analysis to identify key drivers of subsidy impacts. Our analysis showed that subsidy quality increased the functioning of the recipient ecosystem. Recycling increased more strongly than production per unit subsidy quality increase, meaning there was a threshold where an increase in subsidy quality led to stronger effects of subsidies on recycling relative to the production of the recipient ecosystem. Our predictions were most sensitive to basal nutrient input, highlighting the relevance of recipient ecosystem nutrient levels to understanding the effects of ecosystem connections. We argue that recipient ecosystems that rely on high-quality subsidies, such as aquatic-terrestrial ecotones, are highly sensitive to changes in subsidy-recipient ecosystem connections. Our novel model unifies the subsidy hypothesis and food quality hypothesis and provides testable predictions to understand the effects of ecosystem connections on ecosystem functioning under global changes.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biomasa , Insectos
9.
Sci Total Environ ; 872: 161978, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36739014

RESUMEN

Shallow lentic aquatic ecosystems, such as ponds, are important repositories of carbon (C) and hotspots of C cycling and greenhouse gas emission. Tube-dwelling benthic invertebrates, such as chironomids, may be key players in C dynamics in these water bodies, yet their role in the C-budget at ecosystem level remains unclear. We tested whether a 41 % reduction in chironomid abundance after application of the mosquito control biocide Bacillus thuringiensis israelensis (Bti) had implications for the C-fluxes to the atmosphere, C-pools, and C-transformation (i.e. organic matter decomposition) in ponds. Data were collected over one year in the shallow, deep and riparian zones of 12 experimental floodplain pond mesocosms (FPMs), half of them treated with Bti. C-fluxes were measured as CO2 and CH4 emissions, atmospheric deposition, and emerging insects. C-pools were measured as dissolved inorganic and organic C in surface and porewater, sediment organic C, C in plant and in macroinvertebrate biomass. Despite seasonal variability, treated FPMs, for which higher CH4 emissions have been reported, showed a trend towards less dissolved organic C in porewater, while no effect was observed for all remaining components of the C-budget. We attribute the effect of Bti on the C-budget to the reduction in macroinvertebrates biomass, the increase in CH4 emissions, and the input of C from the Bti excipients. This finding suggests that changes in tube-dwelling macroinvertebrates have a weak influence on C cycling in ponds and confirms the existence of long-lasting effects of Bti on specific components of C-budgets.


Asunto(s)
Bacillus thuringiensis , Desinfectantes , Animales , Ecosistema , Control de Mosquitos , Estanques , Carbono , Metano
10.
Environ Sci Technol ; 57(2): 951-962, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36599118

RESUMEN

Aquatic micropollutants can be transported to terrestrial systems and their consumers by emergent aquatic insects. However, micropollutants, such as metals, may also affect the flux of physiologically important polyunsaturated fatty acids (PUFAs). As certain PUFAs have been linked to physiological fitness and breeding success of terrestrial consumers, reduced fluxes from aquatic systems could affect terrestrial populations and food webs. We chronically exposed larvae of the aquatic insect Chironomus riparius to a range of environmentally relevant sediment contents of cadmium (Cd) or copper (Cu) in a 28-day microcosm study. Since elevated water temperatures can enhance metals' toxic effects, we used two temperature regimes, control and periodically elevated temperatures (heat waves) reflecting an aspect of climate change. Cd and Cu significantly reduced adult emergence by up to 95% and 45%, respectively, while elevated temperatures had negligible effects. Both metal contents were strongly reduced (∼90%) during metamorphosis. Furthermore, the chironomid FA profile was significantly altered during metamorphosis with the factors sex and metal exposure being relevant predictors. Consequently, fluxes of physiologically important PUFAs by emergent adults were reduced by up to ∼80%. Our results suggest that considering fluxes of physiologically important compounds, such as PUFAs, by emergent aquatic insects is important to understand the implications of aquatic micropollutants on aquatic-terrestrial meta-ecosystems.


Asunto(s)
Chironomidae , Cadena Alimentaria , Animales , Ecosistema , Ácidos Grasos , Cadmio , Metales/toxicidad , Insectos/fisiología
11.
Environ Pollut ; 316(Pt 1): 120488, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306884

RESUMEN

Chironomid larvae (Diptera: Chironomidae) often dominate aquatic macroinvertebrate communities and are a key food source for many aquatic predators, such as dragonfly and damselfly larvae (Odonata). Changes in aquatic macroinvertebrate communities may propagate through terrestrial food webs via altered insect emergence. Bacillus thuringiensis israelensis (Bti)-based larvicides are widely used in mosquito control but can also reduce the abundance of non-biting chironomid larvae. We applied the maximum field rate of Bti used in mosquito control three times to six mesocosms in a replicated floodplain pond mesocosm (FPM) system in spring for two consecutive years, while the remaining six FPMs were untreated. Three weeks after the third Bti application in the first year, we recorded on average a 41% reduction of chironomid larvae in Bti-treated FPMs compared to untreated FPMs and a shift in benthic macroinvertebrate community composition driven by the reduced number of chironomid, Libellulidae and Coenagrionidae larvae (Odonata). Additionally, the number of emerging Libellulidae (estimated by sampling of exuviae in the second year) was reduced by 54% in Bti-treated FPMs. Since Odonata larvae are not directly susceptible to Bti, our results suggest indirect effects due to reduced prey availability (i.e., chironomid larvae) or increased intraguild predation. As Libellulidae include species of conservation concern, the necessity of Bti applications to their habitats, e.g. floodplains, should be carefully evaluated.


Asunto(s)
Bacillus thuringiensis , Chironomidae , Odonata , Animales , Control de Mosquitos , Larva , Control Biológico de Vectores
12.
Environ Sci Technol ; 56(18): 13449-13460, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36054115

RESUMEN

Carbon monoxide (CO) is the second most abundant identified product of dissolved organic matter (DOM) photodegradation after CO2, but its formation mechanism remains unknown. Previous work showed that aqueous photodegradation of methoxy-substituted aromatics (ArOCH3) produces CO considerably more efficiently than aromatic carbonyls. Following on this precedent, we propose that the methoxy aromatic groups of lignin act as the C source for the photochemical formation of CO from terrestrial DOM via a two-step pathway: formal hydrolytic demethylation to methanol and methanol oxidation to CO. To test the reasonableness of this mechanism, we investigated the photochemistry of eight lignin model compounds. We first observed that initial CO production rates are positively correlated with initial substrate degradation rates only for models containing at least one ArOCH3 group, regardless of other structural features. We then confirmed that all ArOCH3-containing substrates undergo formal hydrolytic demethylation by detecting methanol and the corresponding phenolic transformation products. Finally, we showed that hydroxyl radicals, likely oxidants to initiate methanol oxidation to CO, form during irradiation of all models. This work proposes an explicit mechanism linking ubiquitous, abundant, and easily quantifiable DOM functionalities to CO photoproduction. Our results further hint that methanol may be an abundant (yet overlooked) DOM photoproduct and a likely precursor of formaldehyde, formic acid, and CO2 and that lignin photodegradation may represent a source of hydroxyl radicals.


Asunto(s)
Monóxido de Carbono , Lignina , Dióxido de Carbono , Materia Orgánica Disuelta , Formaldehído , Metanol , Oxidantes , Procesos Fotoquímicos , Fotólisis
13.
Environ Sci Technol ; 56(9): 5478-5488, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35441504

RESUMEN

Emerging aquatic insects have the potential to retain aquatic contaminants after metamorphosis, potentially transporting them into adjacent terrestrial food webs. It is unknown whether this transfer is also relevant for current-use pesticides. We exposed larvae of the nonbiting midge, Chironomus riparius, to a sublethal pulse of a mixture of nine moderately polar fungicides and herbicides (logKow 2.5-4.7) at three field relevant treatment levels (1.2-2.5, 17.5-35.0, or 50.0-100.0 µg/L). We then assessed the pesticide bioaccumulation and bioamplification over the full aquatic-terrestrial life cycle of both sexes including the egg laying of adult females. By applying sensitive LC-MS/MS analysis to small sample volumes (∼5 mg, dry weight), we detected all pesticides in larvae from all treatment levels (2.8-1019 ng/g), five of the pesticides in the adults from the lowest treatment level and eight in the higher treatment levels (1.5-3615 ng/g). Retention of the pesticides through metamorphosis was not predictable based solely on pesticide lipophilicity. Sex-specific differences in adult insect pesticide concentrations were significant for five of the pesticides, with greater concentrations in females for four of them. Over the duration of the adults' lifespan, pesticide concentrations generally decreased in females while persisting in males. Our results suggest that a low to moderate daily dietary exposure to these pesticides may be possible for tree swallow nestlings and insectivorous bats.


Asunto(s)
Chironomidae , Plaguicidas , Contaminantes Químicos del Agua , Animales , Cromatografía Liquida , Ecosistema , Femenino , Insectos , Larva , Masculino , Plaguicidas/análisis , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
14.
Ecol Evol ; 12(3): e8674, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35309751

RESUMEN

Ecosystems are complex structures with interacting abiotic and biotic processes evolving with ongoing succession. However, limited knowledge exists on the very initial phase of ecosystem development and colonization. Here, we report results of a comprehensive ecosystem development monitoring for twelve floodplain pond mesocosms (FPM; 23.5 m × 7.5 m × 1.5 m each) located in south-western Germany. In total, 20 abiotic and biotic parameters, including structural and functional variables, were monitored for 21 months after establishment of the FPMs. The results showed evolving ecosystem development and primary succession in all FPMs, with fluctuating abiotic conditions over time. Principal component analyses and redundancy analyses revealed season and succession time (i.e., time since ecosystem establishment) to be significant drivers of changes in environmental conditions. Initial colonization of both aquatic (i.e., water bodies) and terrestrial (i.e., riparian land areas) parts of the pond ecosystems occurred within the first month, with subsequent season-specific increases in richness and abundance for aquatic and terrestrial taxa over the entire study period. Abiotic environmental conditions and aquatic and terrestrial communities showed increasing interpond variations over time, that is, increasing heterogeneity among the FPMs due to natural environmental divergence. However, both functional variables assessed (i.e., aquatic and terrestrial litter decomposition) showed opposite patterns as litter decomposition rates slightly decreased over time and interpond differences converged with successional ecosystem developments. Overall, our results provide rare insights into the abiotic and biotic conditions and processes during the initial stages of freshwater ecosystem formation, as well as into structural and functional developments of the aquatic and terrestrial environment of newly established pond ecosystems.

15.
Sci Rep ; 11(1): 3440, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564005

RESUMEN

Intraspecific diet specialization, usually driven by resource availability, competition and predation, is common in natural populations. However, the role of parasites on diet specialization of their hosts has rarely been studied. Eye flukes can impair vision ability of their hosts and have been associated with alterations of fish feeding behavior. Here it was assessed whether European perch (Perca fluviatilis) alter their diet composition as a consequence of infection with eye flukes. Young-of-the-year (YOY) perch from temperate Lake Müggelsee (Berlin, Germany) were sampled in two years, eye flukes counted and fish diet was evaluated using both stomach content and stable isotope analyses. Perch diet was dominated by zooplankton and benthic macroinvertebrates. Both methods indicated that with increasing eye fluke infection intensity fish had a more selective diet, feeding mainly on the benthic macroinvertebrate Dikerogammarus villosus, while less intensively infected fish appeared to be generalist feeders showing no preference for any particular prey type. Our results show that infection with eye flukes can indirectly affect interaction of the host with lower trophic levels by altering the diet composition and highlight the underestimated role of parasites in food web studies.


Asunto(s)
Conducta Animal , Infecciones Parasitarias del Ojo , Enfermedades de los Peces , Preferencias Alimentarias , Percas/parasitología , Trematodos , Infecciones por Trematodos , Animales , Infecciones Parasitarias del Ojo/parasitología , Infecciones Parasitarias del Ojo/veterinaria , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/fisiopatología , Infecciones por Trematodos/fisiopatología , Infecciones por Trematodos/veterinaria
16.
Environ Sci Technol ; 54(18): 11109-11117, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32786608

RESUMEN

The chemical class of benzotrifluoride derivatives is widely used in active ingredients of various commercial products, such as pharmaceuticals, pesticides, herbicides, and crop protection agents. Past studies have shown that some benzotrifluorides are not stable under UV irradiation in water and convert into benzoic acids due to C-F bond hydrolysis. It was also observed, but never systematically studied, that the ring substituents play an important role on the direct photochemical reactivity of the CF3 moiety. In the present work, we explore the structure-reactivity relationship between ring substituent and direct photodefluorination for 16 different substituents, by determining fluoride production rates, quantum yields, and half-lives, and found that strong electron-donating groups enhance the reactivity toward hydrolysis. In addition, flufenamic acid, travoprost, dutasteride, cyflumetofen, flutoanil, and teriflunomide were also examined, finding that their direct photochemical reactivity could be qualitatively predicted based on their ring substituents. We provide here a tool to evaluate the environmental persistence of benzotrifluoride contaminants, as well as to design more photodegradable new active ingredients.


Asunto(s)
Fluorobencenos , Herbicidas , Fotólisis , Rayos Ultravioleta
17.
Sci Total Environ ; 719: 137169, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32109728

RESUMEN

In river floodplains many conservation programs focus on the main river channel as the richest in species. Lateral floodplain waterbodies, which contribute largely to functional processes in river systems, often remain overlooked and exposed to anthropogenic pressures. Although the role of hydrological connectedness between lateral waterbodies and the main river on taxonomic composition of fish communities is well understood, effects on functional community composition is much less studied. Abundance data of fish communities were gathered from 152 electrofishing sites in the main channel and lateral floodplain waterbodies of the river Lippe (Germany), over 18 years. These data were used to compare taxonomic, functional, conservation and recreational fishing aspects along the floodplain lateral connectedness gradient. Fish species richness decreased along the lateral continuum from the main river channel to isolated floodplain waterbodies. In contrast, the relative abundance of endangered and also of non-native species increased along this gradient, highlighting the ecological and conservational importance of floodplain waterbodies. Species composition in floodplain waterbodies differed across the connectedness gradient showing distinct assemblages which were not merely subsets of the main channel. The variability of life-history and feeding strategists among classes of lateral connectedness confirmed the importance of each connectivity class in contributing to the overall floodplain functional diversity. This study highlights the need of preserving fish taxonomic and functional biodiversity across the floodplain as one integrated hydrosystem. Conservation and restoration measures should therefore extend to include the whole floodplain area and the complete spectrum of differently connected floodplain waterbodies in addition to the main channel of the river.


Asunto(s)
Ríos , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Inundaciones , Alemania , Hidrología
18.
Environ Sci Technol ; 53(15): 8553-8562, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31306003

RESUMEN

Organic aerosols are subjected to atmospheric processes driven by sunlight, including the production of reactive oxygen species (ROS) capable of transforming their physicochemical properties. In this study, secondary organic aerosols (SOA) generated from aromatic precursors were found to sensitize singlet oxygen (1O2), an arguably underappreciated atmospheric ROS. Specifically, we quantified 1O2, OH radical, and H2O2 quantum yields within photoirradiated solutions of laboratory-generated SOA from toluene, biphenyl, naphthalene, and 1,8-dimethylnaphthalene. At 5 mgC L-1 of SOA extracts, the average steady-state concentrations of 1O2 and of OH radicals in irradiated solutions were 3 ± 1 × 10-14 M and 3.6 ± 0.9 × 10-17 M, respectively. Furthermore, ROS quantum yields of irradiated ambient PM10 extracts were comparable to those from laboratory-generated SOA, suggesting a similarity in ROS production from both types of samples. Finally, by using our measured ROS concentrations, we predict that certain organic compounds found in aerosols, such as amino acids, organo-nitrogen compounds, and phenolic compounds have shortened lifetimes by more than a factor of 2 when 1O2 is considered as an additional sink. Overall, our findings highlight the importance of SOA as a source of 1O2 and its potential as a competitive ROS species in photooxidation processes.


Asunto(s)
Contaminantes Atmosféricos , Oxígeno Singlete , Aerosoles , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Tolueno
19.
Sci Total Environ ; 663: 486-495, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30716640

RESUMEN

Assessments of river restoration outcomes are mostly based on taxonomic identities of species, which may not be optimal because a direct relationship to river functions remains obscure and results are hardly comparable across biogeographic borders. The use of ecological species trait information instead of taxonomic units may help to overcome these challenges. Abundance data for fish communities were gathered from 134 river restoration projects conducted in Switzerland, Germany and Finland, monitored for up to 15 years. These data were related to a dataset of 22 categories of ecological traits describing fish life-history strategies to assess the outcome of the restoration projects. Restoration increased trait functional diversity and evenness in projects that were situated in the potamal zone of rivers. Restoration effect increased with the length of the restored river reaches. In areas with low levels of anthropogenic land use, the peak of the restoration effect was reached already within one to five years after the restoration and effect receded thereafter, while communities responded later in areas with higher levels of anthropogenic land use. In the lower potamal zone, a shift towards opportunistic life-history strategists was observed. In the upper rhithral zone, in contrast, species with an opportunistic life-history strategy increased only in the first five years of restoration, followed by a shift towards equilibrium strategists at restorations older than 5 years. This pattern was more pronounced in rivers with higher level of anthropogenic land use and longer restored river reaches. Restoration reduced the variability in community trait composition between river reaches suggesting that community trait composition within these zones converges when rivers are restored. This study showed how ecological traits are suitable to analyse restoration outcomes and how such an approach can be used for the evaluation and comparison of environmental management actions across geographical regions.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Restauración y Remediación Ambiental/métodos , Peces , Rasgos de la Historia de Vida , Ríos , Animales , Finlandia , Alemania , Suiza
20.
J Org Chem ; 84(5): 2439-2447, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30681338

RESUMEN

Oxazoles and thiazoles are commonly found moieties in nonribosomal peptides (NRPs) and ribosomally synthesized post-translationally modified peptides (RiPPs), which are important biomolecules present in the environment and in natural waters. From previous studies, they seem susceptible to oxidation by singlet oxygen (1O2); therefore, we designed and synthesized model oxazole- and thiazole-peptides and measured their 1O2 bimolecular reaction rate constants, showing slow photooxidation under environmental conditions. We reasoned their stability through the electron-withdrawing effect of the carboxamide substituent. Reaction products were elucidated and support a reaction mechanism involving cycloaddition followed by a series of rearrangements. The first 1O2 bimolecular reaction rate constant for a RiPP, the thiazole-containing peptide Aerucyclamide A, was measured and found in good agreement with the model peptide's rate constant, highlighting the potential of using model peptides to study the transformations of other environmentally relevant NRPs and RiPPs.


Asunto(s)
Oxazoles/química , Péptidos/química , Oxígeno Singlete/química , Tiazoles/química , Cinética , Oxazoles/síntesis química , Oxidación-Reducción , Péptidos/síntesis química , Péptidos Cíclicos/química , Procesos Fotoquímicos , Tiazoles/síntesis química , Valina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA