Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Future Med Chem ; 16(11): 1163-1180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38916566

RESUMEN

During the last decades, five or six member rings azaheterocycles compounds appear to be an extremely valuable source of antifungal agents. Their use seems to be a very attractive solution in antifungal therapy and to overcome antifungal resistance in agriculture. The present review highlights the main results obtained in the field of hybrid and chimeric azine (especially pyridine, quinoline, phenanthroline, bypyridine, naphthyridine and their fused derivatives) derivatives presented in scientific literature from the last 10 years, with emphasis on antifungal activity of the mentioned compounds. A special attention was played to hybrid and chimeric azole-azine class, having in view the high antifungal potential of azoles.


[Box: see text].


Asunto(s)
Antifúngicos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Humanos , Azoles/química , Azoles/farmacología , Azoles/síntesis química , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Hongos/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Quinolinas/química , Quinolinas/farmacología
2.
Front Nutr ; 10: 1264999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094920

RESUMEN

Introduction: The need for healthy foods has become a major concern in our modern world, as the global population continues to grow and environmental challenges intensify. In response to these challenges, researchers have started to explore a range of sustainable solutions, including organic farming practices, precision agriculture, and the development and testing of innovative biofertilizers. Consistent with these ideas come the aim of this study, which sets out to give new insights into the cultivation of two sweet pepper cultivars with economic and nutritional importance in Romania. Methods: Two sweet pepper cultivars (Blancina and Brillant), chemically (Nutrifine®), organically (Orgevit®) and biologically (Micoseed®) fertilized were cultivated over the course of two years (2019 and 2020), between April and October, in high-tunnel, by following a split-plot design with three replications. Production parameters (number of fruits, fruit weight, yield), proximate composition (water content, dry matter, total soluble solids, acidity, ash), the content of phytonutrients (polyphenols, lycopene, ß-carotene, antioxidant activity), phytochemical composition (phenolic compounds) and minerals (macro- and micro-elements) were analyzed in order to determine the impact of fertilization on the quality of sweet peppers. Results: The results showed that the biological and organic fertilizations had a significant positive impact on most of the parameters analyzed, starting with yield and continuing with acidity, phytonutrient content (total phenolic content, lycopene, ß-carotene), antioxidant activity and phytochemical composition (chlorogenic acid, p-coumaric acid, quercetin and isoquercetin). Only in the case of mineral content, the chemical treatment gave better results compared with the organic and biological fertilizers. Conclusion: Overall, this study provides valuable information on the potential of organic and biological fertilizers to enhance the nutritional value of sweet peppers from Blancina F1 and Brillant F1 cultivars, paving the way for subsequent research aimed at achieving superior quality and increased yields.

3.
Heliyon ; 9(11): e21518, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027984

RESUMEN

We present in this paper a direct and efficient study regarding synthesis and spectral characterization of three series of hybrid quinoline anchored with 4-R-benzenesulfonamide moiety, with potential antimicrobial activity, by using ultrasound (US) irradiation and conventional methods (CV). The synthesis pathway is efficient and direct, in two steps: an initial N-acylation of 8-aminoquinoline followed by metal complexation with variously M2+ metals (Cd2+, Co2+, Cu2+, Ni2+, Pd2+, Zn2+). For both type of reactions, N-acylation and complexation, under US irradiations the synthesis have some undeniable advantages: the most relevant being the higher yields, a dramatically decrease for reaction time (with about 150 (one hundred fifty) folds for complexation) comparative with conventional methods (CV) (therefore the spent energy decrease in the same way), a decrease of the amount of used solvents. Taking into account the above considerations these reactions setup could be appreciated as eco-friendly. The structures of the obtained hybrid quinoline - sulfonamide complexes (HQBSM) were determined by elemental analysis and by using spectral investigations: FT-IR, NMR experiments, and X-ray diffraction (in three cases). The FT-IR and NMR spectra of complexes show a similar spectroscopic pattern for all complexes and fully confirm the proposed structures. The X-ray spectra analyses prove without doubts the structure of metal complexes, indicating that their structure depends essentially by two factors: the nature of metal and the nature of sulfonamide-quinoline moieties. Complexes containing 4-methoxy-benzoyl moiety and Zn2+ (e.g. 6a) are tetra-coordinated while in the Ni2+ complex (e.g. 6e) the metallic ion forms a distorted square-based bi-pyramid. In the complexes containing 4-nitro-benzoyl moiety and Cd2+ (e.g. 5d) the metallic ion forms a triangular bipyramid. The antibacterial and antifungal assay reveal that only hybrid HQBSM complex (4e) (with 4-chlorophenyl moiety and Ni2+ in molecule) have a significant antibacterial activity.

4.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887926

RESUMEN

This study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support. To obtain the decontaminating formulations, sodium alginate (ALG) was further incorporated into the colloidal solutions containing the antimicrobial nanoparticles. The properties of the initial CNF-ox-NP-ALG solutions and the resulting peelable nanocomposite hydrogels (obtained by crosslinking with zinc acetate) were assessed by rheological measurements, and mechanical investigations, respectively. The evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for the synthesized nanoparticles (silver, copper, and zinc oxide) was performed. The best values for MIC and MBC were obtained for CNF-ox decorated with AgNPs for both types of bacterial strains: Gram-negative (MIC and MBC values (mg/L): E. coli-3 and 108; P. aeruginosa-3 and 54) and Gram-positive (MIC and MBC values (mg/L): S. aureus-13 and 27). The film-forming decontaminating formulations were also subjected to a microbiology assay consisting of the time-kill test, MIC and MBC estimations, and evaluation of the efficacity of peelable coatings in removing the biological agents from the contaminated surfaces. The best decontamination efficiencies against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa varied between 97.40% and 99.95% when employing silver-decorated CNF-ox in the decontaminating formulations. These results reveal an enhanced antimicrobial activity brought about by the synergistic effect of silver and CNF-ox, coupled with an efficient incorporation of the contaminants inside the peelable films.

5.
Molecules ; 28(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570661

RESUMEN

Heterocycle derivatives have been reported as invaluable compounds in agriculture […].

6.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513320

RESUMEN

This Special Issue (S [...].

7.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37375812

RESUMEN

Five new series of pyrrolo-fused heterocycles were designed through a scaffold hybridization strategy as analogs of the well-known microtubule inhibitor phenstatin. Compounds were synthesized using the 1,3-dipolar cycloaddition of cycloimmonium N-ylides to ethyl propiolate as a key step. Selected compounds were then evaluated for anticancer activity and ability to inhibit tubulin polymerization in vitro. Notably, pyrrolo[1,2-a]quinoline 10a was active on most tested cell lines, performing better than control phenstatin in several cases, most notably on renal cancer cell line A498 (GI50 27 nM), while inhibiting tubulin polymerization in vitro. In addition, this compound was predicted to have a promising ADMET profile. The molecular details of the interaction between compound 10a and tubulin were investigated through in silico docking experiments, followed by molecular dynamics simulations and configurational entropy calculations. Of note, we found that some of the initially predicted interactions from docking experiments were not stable during molecular dynamics simulations, but that configurational entropy loss was similar in all three cases. Our results suggest that for compound 10a, docking experiments alone are not sufficient for the adequate description of interaction details in terms of target binding, which makes subsequent scaffold optimization more difficult and ultimately hinders drug design. Taken together, these results could help shape novel potent antiproliferative compounds with pyrrolo-fused heterocyclic cores, especially from an in silico methodological perspective.

8.
Int J Mol Sci ; 24(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37175832

RESUMEN

This study presents the synthesis, structural characterization, and in vitro evaluation of anticancer activity of some newly benzo[f]quinoline derivatives. The synthesis is facile and efficient, involving two steps: quaternization of nitrogen heterocycle followed by a [3+2] dipolar cycloaddition reaction. The synthesized compounds were characterized by FTIR, NMR, and X-ray diffraction on monocrystal in the case of compounds 6c and 7c. An in vitro single-dose anticancer assay of eighteen benzo[f]quinoline compounds, quaternary salts, and cycloadducts, was performed. The results showed that the most active compounds were quaternary salts 3d and 3f with aromatic R substituents. Quaternary salt 3d revealed non-selective activity against all types of cancer cells, while salt 3f exhibited a highly selective activity against leukemia cells. Compound 3d also presented remarkable cytotoxic efficiency against four distinct types of cancer cells-namely, non-small cell lung cancer HOP-92, melanoma LOX IMVI, melanoma SK-MEL-5, and breast cancer MDA-MB-468. Compound 3f was selected for five-dose screening. The study also includes SAR correlations.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Melanoma , Quinolinas , Humanos , Estructura Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Sales (Química)/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Antineoplásicos/química , Quinolinas/farmacología , Quinolinas/química
9.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770601

RESUMEN

Herein we report a feasible study concerning the synthesis and the in vitro antimicrobial activity of some new homodrimane sesquiterpenoids with a benzimidazole unit. Based on some homodrimane carboxylic acids, on their acyl chlorides and intermediate monoamides, a series of seven N-homodrimenoyl-2-amino-1,3-benzimidazoles and 2-homodrimenyl-1,3-benzimidazoles was synthesized. The syntheses involved the decarboxylative cyclization and condensation of the said acids or acyl chlorides with o-phenylendiamine and 2-aminobenzimidazole, as well as the p-TsOH-mediated cyclodehydration of the said monoacylamides. The structures of the synthesized compounds have been fully confirmed, including by the X-ray diffraction. Their biological activities were evaluated on five species of fungi (Aspergillus niger, Fusarium solani, Penicillium chrysogenum, P. frequentans, and Alternaria alternata) and two strains of bacteria (Bacillus sp. and Pseudomonas aeruginosa). Compounds 7 and 20 showed higher antifungal (MIC = 0.064 and 0.05 µg/mL) and antibacterial (MIC = 0.05 and 0.032 µg/mL) activities compared to those of the standards: caspofungin (MIC = 0.32 µg/mL) and kanamycin (MIC = 2.0 µg/mL), and compounds 4, 10, 14, and 19 had moderate activities.


Asunto(s)
Antifúngicos , Hongos , Antifúngicos/química , Antibacterianos/química , Bencimidazoles/química , Aspergillus niger , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
10.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770739

RESUMEN

Benzoquinolines are used in many drug design projects as starting molecules subject to derivatization. This computational study aims to characterize e benzoquinone drug space to ease future drug design processes based on these molecules. The drug space is composed of all benzoquinones, which are active on topoisomerase II and ATP synthase. Topological, chemical, and bioactivity spaces are explored using computational methodologies based on virtual screening and scaffold hopping and molecular docking, respectively. Topological space is a geometrical space in which the elements composing it can be defined as a set of neighbors (which satisfy a particular axiom). In such space, a chemical space can be defined as the property space spanned by all possible molecules and chemical compounds adhering to a given set of construction principles and boundary conditions. In this chemical space, the potentially pharmacologically active molecules form the bioactivity space. Results show a poly-morphological chemical space that suggests distinct characteristics. The chemical space is correlated with properties such as steric energy, the number of hydrogen bonds, the presence of halogen atoms, and membrane permeability-related properties. Lastly, novel chemical compounds (such as oxadiazole methybenzamide and floro methylcyclohexane diene) with drug-like potential, active on TOPO II and ATP synthase have been identified.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Adenosina Trifosfato
11.
Molecules ; 28(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36770780

RESUMEN

With incidence of antimicrobial resistance rising globally, there is a continuous need for development of new antimicrobial molecules. Phenolic compounds having a versatile scaffold that allows for a broad range of chemical additions; they also exhibit potent antimicrobial activities which can be enhanced significantly through functionalization. Synthetic routes such as esterification, phosphorylation, hydroxylation or enzymatic conjugation may increase the antimicrobial activity of compounds and reduce minimal concentrations needed. With potent action mechanisms interfering with bacterial cell wall synthesis, DNA replication or enzyme production, phenolics can target multiple sites in bacteria, leading to a much higher sensitivity of cells towards these natural compounds. The current review summarizes some of the most important knowledge on functionalization of natural phenolic compounds and the effects on their antimicrobial activity.


Asunto(s)
Antiinfecciosos , Antiinfecciosos/farmacología , Fenoles/farmacología , Extractos Vegetales , Antioxidantes , Antibacterianos/farmacología
12.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38256886

RESUMEN

In this study, some novel benzo[c]quinoline derivatives were synthesized, their structural characteristics were described, and their in vitro anticancer efficacy was investigated. The synthesis involves an initial quaternization of the nitrogen atom from benzo[c]quinoline and then a [3+2] dipolar cycloaddition reaction of the in situ formed ylide. The effectiveness of synthesis using traditional thermal heating (TH) compared to microwave (MW) and ultrasound (US) irradiation was investigated in detail. The setup of a reaction under MW or US irradiation offers a number of additional benefits: higher yields, a reduction in the amount of solvent used compared to TH, a reduction in the reaction time from hours to minutes, and a reduction in the amount of energy consumed. The structure of all the obtained compounds was proved by several spectral techniques (FTIR, HRMS, and NMR). All benzo[c]quinoline derivatives (quaternary salts and cycloadducts) along with ten other benzo[f]quinoline derivatives (quaternary salts and cycloadducts), previously obtained, were tested in an in vitro single-dose anticancer experiment. The results demonstrated that the cycloadducts 5a-c and 6a-c exhibit stronger anticancer activity than quaternary salts 3a-c. The most active compound is compound 5a, with anticancer activity on most of the cell lines studied, while the second most active compound is 6c, showing significant lethality for the SR leukemia cell line (17%). Structure-activity relationship (SAR) correlations are also included in the study.

13.
Molecules ; 27(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36234858

RESUMEN

Azaheterocycles rings with five and six members are important tools for the obtaining of fluorescent materials and fluorescent sensors. The relevant advances in the synthesis of azaheterocyclic derivatives and their optical properties investigation, particularly in the last ten years, was our main objective on this review. The review is organized according to the size of the azaheterocycle ring, 5-, 6-membered and fused ring azaheterocycles, as well as our recent contribution on this research field. In each case, the reaction pathways with reaction condition and obtained yield, and evaluation of the optical properties of the obtained products were briefly presented.

14.
Sci Rep ; 12(1): 16988, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216981

RESUMEN

Two new classes of hybrid quinoline-imidazole/benzimidazole derivatives (the hybrid QIBS salts and QIBC cycloadducts) were designed and synthesized to evaluate their anticancer and antimicrobial activity. The strategy adopted for synthesis is straight and efficient, in four steps: N-acylation, N-alkylation, quaternization and a Huisgen 3 + 2 cycloaddition. The in vitro single-dose anticancer assay of forty six hybrid quinoline-benzimidazole compounds reveal that one QIBS salt (11h), has an excellent quasi nonselective activity against all type of cancer cell with an excellent PGI in the area of 90-100% and very good lethality. Three others quinoline-imidazole/benzimidazole hybrids (8h, 12h, 12f) has an excellent selective activity against some cancer cell lines: breast cancer MDA-MB-468 and Leukemia HL-60 TB). The five-dose assay screening confirms that compound 11h possesses excellent anti-proliferative activity, with GI50 in the range of nano-molar, against some cancer cell lines: Leukemia HL-60 TB, Leukemia K-526, Leukemia RPMI-8226, Breast cancer MDA-MB-468, Lung cancer HOP-92 and Ovarian cancer IGROV1. The antibacterial assay indicates that three hybrid QIBS salts (12f, 12c, 12d) have an excellent activity against Gram-negative bacteria E. coli (superior to control Gentamicin) while against Gram-positive bacteria S. aureus only one compound 8i (R2 = -CF3) exhibits a significant activity (superior to control Gentamicin). The MIC assay indicates that two other compounds (11h, 12h) are biologically active to a very low concentration, in the range of nano-molar. We believe that all these excellent assets related to anticancer and antibacterial activities, make from our hybrid quinoline-imidazole/benzimidazole compounds bearing a phenyl group (R2 = -C6H5) in the para (4)-position of the benzoyl moiety a good candidate for future drug developing.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Fármacos Dermatológicos , Leucemia , Quinolinas , Inhibidores de 14 alfa Desmetilasa/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Línea Celular Tumoral , Fármacos Dermatológicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli , Femenino , Gentamicinas , Humanos , Imidazoles , Estructura Molecular , Quinolinas/farmacología , Sales (Química) , Staphylococcus aureus , Relación Estructura-Actividad
15.
Pharmaceutics ; 14(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36297461

RESUMEN

Nowadays, infectious diseases caused by microorganisms are a major threat to human health, mostly because of drug resistance, multi-drug resistance and extensive-drug-resistance phenomena to microbial pathogens. During the last few years, obtaining hybrid azaheterocyclic drugs represents a powerful and attractive approach in modern antimicrobial therapy with very promising results including overcoming microbial drug resistance. The emphasis of this review is to notify the scientific community about the latest recent advances from the last five years in the field of hybrid azine derivatives with antimicrobial activity. The review is divided according to the main series of six-member ring azaheterocycles with one nitrogen atom and their fused analogs. In each case, the main essential data concerning synthesis and antimicrobial activity are presented.

16.
Molecules ; 27(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014322

RESUMEN

Based on some homodrimane carboxylic acids and their acyl chlorides, a series of fourteen 2-homodrimenyl-1,3-benzothiazoles, N-homodrimenoyl-2-amino-1,3-benzothiazoles, 4'-methyl-homodrimenoyl anilides and 4'-methyl-homodrimenthioyl anilides were synthesized and their biological activities were evaluated on five species of fungi (Aspergillus niger, Fusarium solani, Penicillium chrysogenum, P. frequentans, and Alternaria alternata) and two strains of bacteria (Bacillus sp. and Pseudomonas aeruginosa). The synthesis involved the decarboxylative cyclization, condensation and thionation of the said acids, anhydrides or their derivatives with 2-aminothiophenol, 2-aminobenzothiazole, p-toluidine and Lawesson's reagent. As a result, together with the desired compounds, some unexpected products 8, 25, and 27 were obtained, and the structures and mechanisms for their formation have been proposed. Compounds 4, 9, and 25 showed higher antifungal and antibacterial activity compared to the standards caspofungin (MIC = 1.5 µg/mL) and kanamycin (MIC = 3.0 µg/mL), while compound 8 had comparable activities. In addition, compounds 6, 17, and 27 showed selective antifungal activity at MIC = 2.0, 0.25, and 1.0 µg/mL, respectively.


Asunto(s)
Antifúngicos , Sesquiterpenos , Anilidas , Antibacterianos/química , Antifúngicos/química , Benzotiazoles/química , Hongos , Pruebas de Sensibilidad Microbiana
17.
Molecules ; 27(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35630657

RESUMEN

We report here an energy-efficient and straight synthesis of two new classes of derivatized fluorescent azatetracycles under ultrasound (US) irradiation. A first class of azatetracyclic compounds was synthesized by heterogeneous catalytic bromination of the α-keto substituent attached to the pyrrole moiety of the tetracyclic cycloadducts, while for the second, one class was synthesized by nucleophilic substitution of the bromide with the azide group. Comparative with conventional thermal heating (TH) under US irradiation, both types of reactions occur with substantially higher yields, shortened reaction time (from days to hours), lesser energy consumed, easier workup of the reaction, and smaller amounts of solvent required (at least three to five-fold less compared to TH), which make these reactions to be considered as energy efficient. The derivatized azatetracycle are blue emitters with λmax of fluorescence around 430-445 nm. A certain influence of the azatetracycle substituents concerning absorption and fluorescent properties was observed. Compounds anchored with a bulky azide group have shown decreased fluorescence intensity compared with corresponding bromides.


Asunto(s)
Azidas , Calefacción , Fluorescencia , Pirroles
18.
Molecules ; 26(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34577140

RESUMEN

This communication reports a novel synthesis route for the preparation of monofunctionalized ß-cyclodextrin in a single stage. The approach involves only the in-situ protection of secondary hydroxyl groups as an excellent alternative to the classical procedure involving a series of five steps of protection and deprotection of hydroxyl groups (both primary and secondary ones) belonging to ß-cyclodextrin.

19.
Molecules ; 26(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443688

RESUMEN

We report here the synthesis and optical spectral properties of several new azasteroid derivatives. The formation of these compounds was explained based on the most probable mechanism. The luminescent heterocycles were synthesized by 1,3-dipolar cycloaddition reactions between benzo[f]quinoline and methylpropiolate or dimethyl acetylenedicarboxylate (DMAD). A selective and efficient way for [3+2]-dipolar cycloaddition of benzo[f]quinolinium ylides under ultrasound (US) irradiation (20 kHz processing frequency) is presented. We report substantially higher yields under US irradiation, whereas the solvent amounts required are at least three-fold less compared to classical heating. The azasteroid derivatives are blue emitters with λmax of fluorescence around 430-450 nm. A certain influence of the azasteroid substituents concerning absorption and fluorescent properties was observed. Compounds anchored with a bulky pivaloyl group or without a C=O carbonyl group have shown increased fluorescence intensity.

20.
Polymers (Basel) ; 13(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34301095

RESUMEN

This study presents the synthesis and characterization of polymer derivatives of beta-cyclodextrin (BCD), obtained by chemical grafting onto spherical polymer particles (200 nm) presenting oxirane functional groups at their surface. The polymer spheres were synthesized by emulsion polymerization of styrene (ST) and hydroxyethyl methacrylate (HEMA), followed by the grafting on the surface of glycidyl methacrylate (GMA) by seeded emulsion polymerization. The BCD-polymer derivatives were obtained using two BCD derivatives with hydroxylic (BCD-OH) and amino groups (BCD-NH2). The degree of polymer covalent functionalization using the BCD-OH and BCD-NH2 derivatives were determined to be 4.27 and 19.19 weight %, respectively. The adsorption properties of the materials were evaluated using bisphenol A as a target molecule. The best fit for the adsorption kinetics was Lagergren's model (both for Qe value and for R2) together with Weber's intraparticle diffusion model in the case of ST-HEMA-GMA-BCD-NH2. The isothermal adsorption evaluation indicated that both systems follow a Langmuir type behavior and afforded a Qmax value of 148.37 mg g-1 and 37.09 mg g-1 for ST-HEMA-GMA-BCD-NH2 and ST-HEMA-GMA-BCD-OH, respectively. The BCD-modified polymers display a degradation temperature of over 400 °C which can be attributed to the existence of hydrogen bonds and BCD thermal degradation pathway in the presence of the polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...