Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39440441

RESUMEN

Employing immunohistochemical procedures with antibodies raised against tyrosine hydroxylase (TH) and choline acetyltransferase we identified and mapped the locus coeruleus complex (LoC) and the pontine laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPN) cholinergic nuclei in the brains of a Congo gray parrot, a timneh gray parrot, and a pied crow. The LoC and LDT/PPN are centrally involved in the regulation and generation of different sleep states, and as all birds studied to date show both REM and non-REM sleep states, like mammals, we investigated whether these noradrenergic and cholinergic nuclei in the avian pons shared anatomical features with those in the mammalian pons. The LoC was parcellated into 3 distinct nuclei, including the locus coeruleus (A6), subcoeruleus (A7), and the fifth arcuate nucleus (A5), while distinct LDT and PPN nuclei were revealed. Several similarities that allow the assumption of homology of these nuclei between birds and mammals were revealed, including their location relative to each other and other structures within the pontine region, as well as a specific degree of topographical overlap of the noradrenergic and cholinergic neurons. Despite this, some differences were noted that may be of interest in understanding the differences in sleep between birds and mammals. Further anatomical and physiological studies are needed to determine whether these pontine nuclei in birds play the same role as in mammals, as while the homology is apparent, the functional analogy needs to be revealed.

2.
J Comp Neurol ; 532(9): e25669, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39291629

RESUMEN

The cerebral cortex accounts for substantial energy expenditure, primarily driven by the metabolic demands of synaptic signaling. Mitochondria, the organelles responsible for generating cellular energy, play a crucial role in this process. We investigated ultrastructural characteristics of the primary visual cortex in 18 phylogenetically diverse mammals, spanning a broad range of brain sizes from mouse to elephant. Our findings reveal remarkable uniformity in synapse density, postsynaptic density (PSD) length, and mitochondria density, indicating functional and metabolic constraints that maintain these fundamental features. Notably, we observed an average of 1.9 mitochondria per synapse across mammalian species. When considered together with the trend of decreasing neuron density with larger brain size, we find that brain enlargement in mammals is characterized by increasing proportions of synapses and mitochondria per cortical neuron. These results shed light on the adaptive mechanisms and metabolic dynamics that govern cortical ultrastructure across mammals.


Asunto(s)
Mamíferos , Mitocondrias , Corteza Visual Primaria , Sinapsis , Animales , Sinapsis/ultraestructura , Sinapsis/metabolismo , Mitocondrias/ultraestructura , Mitocondrias/metabolismo , Corteza Visual Primaria/fisiología , Metabolismo Energético/fisiología , Especificidad de la Especie , Corteza Visual/metabolismo , Corteza Visual/citología , Corteza Visual/fisiología , Corteza Visual/ultraestructura , Ratones , Humanos
3.
J Comp Neurol ; 532(7): e25652, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962882

RESUMEN

Although the mammalian cerebral cortex is most often described as a hexalaminar structure, there are cortical areas (primary motor cortex) and species (elephants, cetaceans, and hippopotami), where a cytoarchitecturally indistinct, or absent, layer 4 is noted. Thalamocortical projections from the core, or first order, thalamic system terminate primarily in layers 4/inner 3. We explored the termination sites of core thalamocortical projections in cortical areas and in species where there is no cytoarchitecturally distinct layer 4 using the immunolocalization of vesicular glutamate transporter 2, a known marker of core thalamocortical axon terminals, in 31 mammal species spanning the eutherian radiation. Several variations from the canonical cortical column outline of layer 4 and core thalamocortical inputs were noted. In shrews/microchiropterans, layer 4 was present, but many core thalamocortical projections terminated in layer 1 in addition to layers 4 and inner 3. In primate primary visual cortex, the sublaminated layer 4 was associated with a specialized core thalamocortical projection pattern. In primate primary motor cortex, no cytoarchitecturally distinct layer 4 was evident and the core thalamocortical projections terminated throughout layer 3. In the African elephant, cetaceans, and river hippopotamus, no cytoarchitecturally distinct layer 4 was observed and core thalamocortical projections terminated primarily in inner layer 3 and less densely in outer layer 3. These findings are contextualized in terms of cortical processing, perception, and the evolutionary trajectory leading to an indistinct or absent cortical layer 4.


Asunto(s)
Axones , Neocórtex , Vías Nerviosas , Tálamo , Animales , Tálamo/citología , Tálamo/anatomía & histología , Neocórtex/citología , Neocórtex/anatomía & histología , Vías Nerviosas/citología , Vías Nerviosas/anatomía & histología , Axones/fisiología , Mamíferos/anatomía & histología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Especificidad de la Especie
4.
Artículo en Inglés | MEDLINE | ID: mdl-38828695

RESUMEN

The present study reports the results of an electrophysiological analysis of sleep in the East African root rat, Tachyoryctes splendens, belonging to the rodent subfamily Spalacinae. Telemetric electroencephalographic (EEG) and electromyographic recordings, with associated video recording, on three root rats over a continuous 72 h period (12 h light/12 h dark cycle) were analyzed. The analysis revealed that the East African root rat has a total sleep time (TST) of 8.9 h per day. Despite this relatively short total sleep time in comparison to fossorial rodents, nonrapid eye movement (non-REM) sleep and rapid eye movement (REM) sleep states showed similar physiological signatures to that observed in other rodents and no unusual sleep states were observed. REM occupied 19.7% of TST, which is within the range observed in other rodents. The root rats were extremely active during the dark period, and appeared to spend much of the light period in quiet wake while maintaining vigilance (as determined from both EEG recordings and behavioral observation). These recordings were made under normocapnic environmental conditions, which contrasts with the hypercapnic environment of their natural burrows.

5.
J Comp Neurol ; 532(4): e25612, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38591638

RESUMEN

Cellular-level anatomical data from early fetal brain are sparse yet critical to the understanding of neurodevelopmental disorders. We characterize the organization of the human cerebral cortex between 13 and 15 gestational weeks using high-resolution whole-brain histological data sets complimented with multimodal imaging. We observed the heretofore underrecognized, reproducible presence of infolds on the mesial surface of the cerebral hemispheres. Of note at this stage, when most of the cerebrum is occupied by lateral ventricles and the corpus callosum is incompletely developed, we postulate that these mesial infolds represent the primordial stage of cingulate, callosal, and calcarine sulci, features of mesial cortical development. Our observations are based on the multimodal approach and further include histological three-dimensional reconstruction that highlights the importance of the plane of sectioning. We describe the laminar organization of the developing cortical mantle, including these infolds from the marginal to ventricular zone, with Nissl, hematoxylin and eosin, and glial fibrillary acidic protein (GFAP) immunohistochemistry. Despite the absence of major sulci on the dorsal surface, the boundaries among the orbital, frontal, parietal, and occipital cortex were very well demarcated, primarily by the cytoarchitecture differences in the organization of the subplate (SP) and intermediate zone (IZ) in these locations. The parietal region has the thickest cortical plate (CP), SP, and IZ, whereas the orbital region shows the thinnest CP and reveals an extra cell-sparse layer above the bilaminar SP. The subcortical structures show intensely GFAP-immunolabeled soma, absent in the cerebral mantle. Our findings establish a normative neurodevelopment baseline at the early stage.


Asunto(s)
Encéfalo , Corteza Cerebral , Humanos , Cuerpo Calloso , Neuronas , Cabeza
6.
J Comp Neurol ; 532(4): e25616, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38634526

RESUMEN

Like the cerebralcortex, the surface of the cerebellum is repeatedly folded. Unlike the cerebralcortex, however, cerebellar folds are much thinner and more numerous; repeatthemselves largely along a single direction, forming accordion-like folds transverseto the mid-sagittal plane; and occur in all but the smallest cerebella. We haveshown previously that while the location of folds in mammalian cerebral cortex isclade-specific, the overall degree of folding strictly follows a universalpower law relating cortical thickness and the exposed and total surface areas predictedfrom the minimization of the effective free energy of an expanding, self-avoidingsurface of a certain thickness. Here we show that this scaling law extends tothe folding of the mid-sagittal sections of the cerebellum of 53 speciesbelonging to six mammalian clades. Simultaneously, we show that each clade hasa previously unsuspected distinctive spatial pattern of folding evident at themid-sagittal surface of the cerebellum. We note, however, that the mammaliancerebellum folds as a multi-fractal object, because of the difference betweenthe outside-in development of the cerebellar cortex around a preexisting coreof already connected white matter, compared to the inside-out development ofthe cerebral cortex with a white matter volume that develops as the cerebralcortex itself gains neurons. We conclude that repeated folding, one of the mostrecognizable features of biology, can arise simply from the interplay betweenthe universal applicability of the physics of self-organization and biological,phylogenetical clade-specific contingency, without the need for invokingselective pressures in evolution.


Asunto(s)
Cerebelo , Corteza Cerebral , Animales , Corteza Cerebral/fisiología , Mamíferos , Neuronas/fisiología , Corteza Cerebelosa
7.
J Comp Neurol ; 532(5): e25618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686628

RESUMEN

The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.


Asunto(s)
Canidae , Núcleo Caudado , Felidae , Imagen por Resonancia Magnética , Animales , Núcleo Caudado/anatomía & histología , Núcleo Caudado/diagnóstico por imagen , Felidae/anatomía & histología , Felidae/fisiología , Canidae/anatomía & histología , Imagen por Resonancia Magnética/métodos , Masculino , Conducta Animal/fisiología , Femenino , Especificidad de la Especie , Encéfalo/anatomía & histología
8.
J Comp Neurol ; 532(3): e25602, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38483002

RESUMEN

The orexinergic/hypocretinergic system, while having several roles, appears to be a key link in the balance between arousal and food intake. In birds, to date, this system has only been examined anatomically in four species, all with brains smaller than 3.5 g and of limited phylogenetic range. Here, using orexin-A immunohistochemistry, we describe the distribution, morphology, and nuclear parcellation of orexinergic neurons within the hypothalami of a Congo gray and a Timneh gray parrot, a pied crow, an emu, and a common ostrich. These birds represent a broad phylogeny, with brains ranging in size from 7.85 to 26.5 g. Within the hypothalami of the species studied, the orexinergic neurons were organized in two clusters, and a densely packed paraventricular hypothalamic nucleus cluster located within the medial hypothalamus (Hyp), but not contacting the ventricle, and a more loosely packed lateral hypothalamic cluster in the lateral Hyp. Stereological analysis revealed a strong correlation, using phylogenetic generalized least squares regression analyses, between brain mass and the total number of orexinergic neurons, as well as soma parameters such as volume and area. Orexinergic axonal terminals evinced two types of boutons, larger and the smaller en passant boutons. Unlike the orexinergic system in mammals, which has several variances in cluster organization, that of the birds studied, in the present and previous studies, currently shows organizational invariance, despite the differences in brain and body mass, phylogenetic relationships, and life-histories of the species studied.


Asunto(s)
Neuropéptidos , Animales , Neuropéptidos/metabolismo , Filogenia , Neuronas/metabolismo , Orexinas , Encéfalo/metabolismo , Hipotálamo/metabolismo , Aves , Mamíferos
9.
J Comp Neurol ; 532(2): e25587, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335048

RESUMEN

We examined the presence/absence and parcellation of cholinergic neurons in the hypothalami of five birds: a Congo grey parrot (Psittacus erithacus), a Timneh grey parrot (P. timneh), a pied crow (Corvus albus), a common ostrich (Struthio camelus), and an emu (Dromaius novaehollandiae). Using immunohistochemistry to an antibody raised against the enzyme choline acetyltransferase, hypothalamic cholinergic neurons were observed in six distinct clusters in the medial, lateral, and ventral hypothalamus in the parrots and crow, similar to prior observations made in the pigeon. The expression of cholinergic nuclei was most prominent in the Congo grey parrot, both in the medial and lateral hypothalamus. In contrast, no evidence of cholinergic neurons in the hypothalami of either the ostrich or emu was found. It is known that the expression of sleep states in the ostrich is unusual and resembles that observed in the monotremes that also lack hypothalamic cholinergic neurons. It has been proposed that the cholinergic system acts globally to produce and maintain brain states, such as those of arousal and rapid-eye-movement sleep. The hiatus in the cholinergic system of the ostrich, due to the lack of hypothalamic cholinergic neurons, may explain, in part, the unusual expression of sleep states in this species. These comparative anatomical and sleep studies provide supportive evidence for global cholinergic actions and may provide an important framework for our understanding of one broad function of the cholinergic system and possible dysfunctions associated with global cholinergic neural activity.


Asunto(s)
Dromaiidae , Struthioniformes , Animales , Dromaiidae/metabolismo , Struthioniformes/metabolismo , Encéfalo/metabolismo , Hipotálamo/metabolismo , Neuronas Colinérgicas/metabolismo , Sueño/fisiología , Colinérgicos , Colina O-Acetiltransferasa/metabolismo
10.
Brain Behav Evol ; 99(1): 25-44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38354714

RESUMEN

INTRODUCTION: Felids have evolved a specialized suite of morphological adaptations for obligate carnivory. Although the musculoskeletal anatomy of the Felidae has been studied extensively, the comparative neuroanatomy of felids is relatively unexplored. Little is known about how variation in the cerebral anatomy of felids relates to species-specific differences in sociality, hunting strategy, or activity patterns. METHODS: We quantitatively analyzed neuropil variation in the prefrontal, primary motor, and primary visual cortices of six species of Felidae (Panthera leo, Panthera uncia, Panthera tigris, Panthera leopardus, Acinonyx jubatus, Felis sylvestris domesticus) to investigate relationships with brain size, neuronal cell parameters, and select behavioral and ecological factors. Neuropil is the dense, intricate network of axons, dendrites, and synapses in the brain, playing a critical role in information processing and communication between neurons. RESULTS: There were significant species and regional differences in neuropil proportions, with African lion, cheetah, and tiger having more neuropil in all three cortical regions in comparison to the other species. Based on regression analyses, we find that the increased neuropil fraction in the prefrontal cortex supports social and behavioral flexibility, while in the primary motor cortex, this facilitates the neural activity needed for hunting movements. Greater neuropil fraction in the primary visual cortex may contribute to visual requirements associated with diel activity patterns. CONCLUSION: These results provide a cross-species comparison of neuropil fraction variation in the Felidae, particularly the understudied Panthera, and provide evidence for convergence of the neuroanatomy of Panthera and cheetahs.


Asunto(s)
Corteza Motora , Neurópilo , Corteza Prefrontal , Especificidad de la Especie , Corteza Visual , Animales , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Corteza Visual/anatomía & histología , Felidae/anatomía & histología , Felidae/fisiología , Masculino , Femenino
11.
Brain Struct Funct ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904002

RESUMEN

The recent development of methods for constructing directly comparable white matter atlases in primate brains from diffusion MRI allows us to probe specializations unique to humans, great apes, and other primate taxa. Here, we constructed the first white matter atlas of a lesser ape using an ex vivo diffusion-weighted scan of a brain from a young adult (5.5 years) male lar gibbon. We find that white matter architecture of the gibbon temporal lobe suggests specializations that are reminiscent of those previously reported for great apes, specifically, the expansion of the arcuate fasciculus and the inferior longitudinal fasciculus in the temporal lobe. Our findings suggest these white matter expansions into the temporal lobe were present in the last common ancestor to hominoids approximately 16 million years ago and were further modified in the great ape and human lineages. White matter atlases provide a useful resource for identifying neuroanatomical differences and similarities between humans and other primate species and provide insight into the evolutionary variation and stasis of brain organization.

12.
Mov Ecol ; 11(1): 71, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891697

RESUMEN

Understanding the processes that determine how animals allocate time to space is a major challenge, although it is acknowledged that summed animal movement pathways over time must define space-time use. The critical question is then, what processes structure these pathways? Following the idea that turns within pathways might be based on environmentally determined decisions, we equipped Arabian oryx with head- and body-mounted tags to determine how they orientated their heads - which we posit is indicative of them assessing the environment - in relation to their movement paths, to investigate the role of environment scanning in path tortuosity. After simulating predators to verify that oryx look directly at objects of interest, we recorded that, during routine movement, > 60% of all turns in the animals' paths, before being executed, were preceded by a change in head heading that was not immediately mirrored by the body heading: The path turn angle (as indicated by the body heading) correlated with a prior change in head heading (with head heading being mirrored by subsequent turns in the path) twenty-one times more than when path turns occurred due to the animals adopting a body heading that went in the opposite direction to the change in head heading. Although we could not determine what the objects of interest were, and therefore the proposed reasons for turning, we suggest that this reflects the use of cephalic senses to detect advantageous environmental features (e.g. food) or to detect detrimental features (e.g. predators). The results of our pilot study suggest how turns might emerge in animal pathways and we propose that examination of points of inflection in highly resolved animal paths could represent decisions in landscapes and their examination could enhance our understanding of how animal pathways are structured.

13.
J Comp Physiol B ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115234

RESUMEN

Rest is a state of adaptive inactivity that increases the efficiency of activity by regulating its timing and reducing energy use when activity is not beneficial. Thus, animals can go without rest when specific demands, such as mating, favour being awake. Sexually active male blue wildebeest (bulls) are typically territorial, and it has been reported that when a bull is protecting a harem during the mating season (rut), he neither eats nor rests. We examined the daily activity and inactivity patterns of dominant bulls by means of actigraphy for 3 months, which included the rut. We also measured faecal androgen metabolite (fAM) levels and subcutaneous temperature, both of which have variances known to delineate the rut. During the rut, wildebeest bulls experienced higher levels of activity, fAM, and a greater daily range of subcutaneous temperature. Despite previous reports, the male blue wildebeest rested daily during the rut, and while the amount of rest was low, it was not substantially lower than prior to the rut. The amount of time spent inactive increased substantially after the rut. The timing of daily activity and inactivity patterns did not vary substantially across the recording period. Across the recording period, the average daily ambient temperatures decreased (seasonality), and the subcutaneous temperature followed this pattern, although it was not as marked. It appears that in the post-rut period a substantive increase in time spent at rest occurs, potentially allowing the wildebeest bulls time to recover following a period of intense activity.

14.
Prog Brain Res ; 275: 25-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36841570

RESUMEN

All modern mammals are descendants of the paraphyletic non-mammaliaform Synapsida, colloquially referred to as the "mammal-like reptiles." It has long been assumed that these mammalian ancestors were essentially reptile-like in their morphology, biology, and behavior, i.e., they had a small brain, displayed simple behavior, and their sensory organs were unrefined compared to those of modern mammals. Recent works have, however, revealed that neurological, sensory, and behavioral traits previously considered typically mammalian, such as whiskers, enhanced olfaction, nocturnality, parental care, and complex social interactions evolved before the origin of Mammaliaformes, among the early-diverging "mammal-like reptiles." In contrast, an enlarged brain did not evolve immediately after the origin of mammaliaforms. As such, in terms of paleoneurology, the last "mammal-like reptiles" were not significantly different from the earliest mammaliaforms. The abundant data and literature published in the last 10 years no longer supports the "three pulses" scenario of synapsid brain evolution proposed by Rowe and colleagues in 2011, but supports the new "outside-in" model of Rodrigues and colleagues proposed in 2018, instead. As Mesozoic reptiles were becoming the dominant taxa within terrestrial ecosystems, synapsids gradually adapted to smaller body sizes and nocturnality. This resulted in a sensory revolution in synapsids as olfaction, audition, and somatosensation compensated for the loss of visual cues. This altered sensory input is aligned with changes in the brain, the most significant of which was an increase in relative brain size.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Humanos , Encéfalo/anatomía & histología , Mamíferos/anatomía & histología , Reptiles
15.
J Comp Neurol ; 531(3): 366-389, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36354959

RESUMEN

Employing orexin-A immunohistochemistry, we describe the distribution, morphology, and nuclear parcellation of orexinergic neurons within the hypothalami of an Asiatic lion (Panthera leo subsp. persica), an African lion (Panthera leo subsp. melanochaita), and a Southeast African cheetah (Acinonyx jubatus subsp. jubatus). In all three felids, the clustering of large, bipolar, and multipolar hypothalamic orexinergic neurons primarily follows the pattern observed in other mammals. The orexinergic neurons were found, primarily, to form three distinct clusters-the main, zona incerta, and optic tract clusters. In addition, large orexinergic neurons were observed in the ventromedial supraoptic region of the hypothalamus, where they are not typically observed in other species. As has been observed in cetartiodactyls and the African elephant, a cluster of small, multipolar orexinergic neurons, the parvocellular cluster, was observed in the medial zone of the hypothalamus in all three felids, although this parvocellular cluster has not been reported in other carnivores. In both subspecies of lions, but not the cheetah, potential orexin-immunopositive neurons were observed in the paraventricular hypothalamic nucleus, supraoptic nucleus, the lateral part of the retrochiasmatic area, and the inner layer of the median eminence. The distribution and parcellation of orexinergic neurons in the hypothalami of the three felids studied appear to be more complex than observed in many other mammals and for the two subspecies of lion may be even more complex. These findings are discussed in terms of potential technical concerns, phylogenetic variations of this system, and potentially associated functional aspects of the orexinergic system.


Asunto(s)
Acinonyx , Leones , Animales , Humanos , Filogenia , Hipotálamo , Neuronas , Pueblo Africano
16.
Anat Rec (Hoboken) ; 306(4): 844-878, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36179372

RESUMEN

The current study provides an analysis of the cholinergic, catecholaminergic, serotonergic, and orexinergic neuronal populations, or nuclei, in the brain of the lesser hedgehog tenrec, as revealed with immunohistochemical techniques. For all four of these neuromodulatory systems, the nuclear organization was very similar to that observed in other Afrotherian species and is broadly similar to that observed in other mammals. The cholinergic system shows the most variation, with the lesser hedgehog tenrec exhibiting palely immunopositive cholinergic neurons in the ventral portion of the lateral septal nucleus, and the possible absence of cholinergic neurons in the parabigeminal nucleus and the medullary tegmental field. The nuclear complement of the catecholaminergic, serotonergic and orexinergic systems showed no specific variances in the lesser hedgehog tenrec when compared to other Afrotherians, or broadly with other mammals. A striking feature of the lesser hedgehog tenrec brain is a significant mesencephalic flexure that is observed in most members of the Tenrecoidea, as well as the closely related Chrysochlorinae (golden moles), but is not present in the greater otter shrew, a species of the Potomogalidae lineage currently incorporated into the Tenrecoidea. In addition, the cholinergic neurons of the ventral portion of the lateral septal nucleus are observed in the golden moles, but not in the greater otter shrew. This indicates that either complex parallel evolution of these features occurred in the Tenrecoidea and Chrysochlorinae lineages, or that the placement of the Potomogalidae within the Tenrecoidea needs to be re-examined.


Asunto(s)
Nutrias , Tenrecidae , Animales , Musarañas , Encéfalo , Neuronas Colinérgicas , Colinérgicos
17.
Brain Behav Evol ; 98(6): 275-289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38198769

RESUMEN

INTRODUCTION: The study of non-laboratory species has been part of a broader effort to establish the basic organization of the mammalian neocortex, as these species may provide unique insights relevant to cortical organization, function, and evolution. METHODS: In the present study, the organization of three somatosensory cortical areas of the medium-sized (5-11 kg body mass) Amazonian rodent, the paca (Cuniculus paca), was determined using a combination of electrophysiological microelectrode mapping and histochemical techniques (cytochrome oxidase and NADPH diaphorase) in tangential sections. RESULTS: Electrophysiological mapping revealed a somatotopically organized primary somatosensory cortical area (S1) located in the rostral parietal cortex with a characteristic foot-medial/head-lateral contralateral body surface representation similar to that found in other species. S1 was bordered laterally by two regions housing neurons responsive to tactile stimuli, presumably the secondary somatosensory (S2) and parietal ventral (PV) cortical areas that evinced a mirror-reversal representation (relative to S1) of the contralateral body surface. The limits of the putative primary visual (V1) and primary auditory (A1) cortical areas, as well as the complete representation of the contralateral body surface in S1, were determined indirectly by the histochemical stains. Like the barrel field described in small rodents, we identified a modular arrangement located in the face representation of S1. CONCLUSIONS: The relative location, somatotopic organization, and pattern of neuropil histochemical reactivity in the three paca somatosensory cortical areas investigated are similar to those described in other mammalian species, providing additional evidence of a common plan of organization for the somatosensory cortex in the rostral parietal cortex of mammals.


Asunto(s)
Cuniculidae , Corteza Somatosensorial , Animales , Corteza Somatosensorial/fisiología , Roedores , Lóbulo Parietal/fisiología , Mapeo Encefálico , América del Sur
18.
J Comp Neurol ; 530(15): 2692-2710, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35765943

RESUMEN

The spinal cord of the tree pangolin is known to be very short compared to the overall length of the body and tail. Here, we provide a description of the tree pangolin spinal cord to determine whether the short length contributes to specific structural, and potentially functional, differences. The short spinal cord of the adult tree pangolin, at around 13 cm, terminates at the midthoracic level. Within this shortened spinal cord, we could identify six regions, which from rostral to caudal include the prebrachial, brachial, interramal, crural, postcrural, and caudal regions, with both the brachial and crural regions showing distinct swellings. The chemoarchitecture of coronal sections through these regions confirmed regional assignation, being most readily delineated by the presence of cholinergic neurons forming the intermediolateral column in the interramal region and the sacral parasympathetic nucleus in the postcrural region. The 10 laminae of Rexed were observed throughout the spinal cord and presented with an anatomical organization similar to that observed in other mammals. Despite the shortened length of the tree pangolin spinal cord, the regional and laminar anatomical organization is very similar to that observed in other mammals. This indicates that the functional aspects of the short tree pangolin spinal cord can be inferred from what is known in other mammals.


Asunto(s)
Encéfalo/anatomía & histología , Pangolines/anatomía & histología , Pangolines/fisiología , Médula Espinal/anatomía & histología , Médula Espinal/fisiología , Animales , Encéfalo/fisiología , Neuronas Colinérgicas/fisiología , Mamíferos/anatomía & histología , Mamíferos/fisiología
19.
J Comp Neurol ; 530(15): 2611-2644, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35708120

RESUMEN

The current study provides a detailed architectural analysis of the subpallial telencephalon of the tree pangolin. In the tree pangolin, the subpallial telencephalon was divided into septal and striatopallidal regions. The septal region contained the septal nuclear complex, diagonal band of Broca, and the bed nuclei of the stria terminalis. The striatopallidal region comprised of the dorsal (caudate, putamen, internal and external globus pallidus) and ventral (nucleus accumbens, olfactory tubercle, ventral pallidum, nucleus basalis, basal part of the substantia innominata, lateral stripe of the striatum, navicular nucleus, and the major island of Calleja) striatopallidal complexes. In the tree pangolin, the organization and numbers of nuclei forming these regions and complexes, their topographical relationships to each other, and the cyto-, myelo-, and chemoarchitecture, were found to be very similar to that observed in commonly studied mammals. Minor variations, such as less nuclear parcellation in the bed nuclei of the stria terminalis, may represent species-specific variations, or may be the result of the limited range of stains used. Given the overall similarity across mammalian species, it appears that the subpallial telencephalon of the mammalian brain is highly conserved in terms of evolutionary changes detectable with the methods used. It is also likely that the functions associated with these nuclei in other mammals can be translated directly to the tree pangolin, albeit with the understanding that the stimuli that produce activity within these regions may be specific to the life history requirements of the tree pangolin.


Asunto(s)
Pangolines , Telencéfalo , Animales , Encéfalo , Pangolines/anatomía & histología , Tabique del Cerebro , Telencéfalo/anatomía & histología
20.
J Comp Neurol ; 530(15): 2645-2691, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35621013

RESUMEN

A cyto-, myelo-, and chemoarchitectonic analysis of the pallial telencephalon of the tree pangolin is provided. As certain portions of the pallial telencephalon have been described previously (olfactory pallium, hippocampal formation, and amygdaloid complex), we focus on the claustrum and endopiriform nuclear complex, the white matter and white matter interstitial cells, and the areal organization of the cerebral cortex. Our analysis indicates that the organization of the pallial telencephalon of the tree pangolin is similar to that observed in many other mammals, and specifically quite similar to the closely related carnivores. The claustrum of the tree pangolin exhibits a combination of insular and laminar architecture, while the endopiriform nuclear complex contains three nuclei, both reminiscent of observations made in other mammals. The population of white matter interstitial cells resembles that observed in other mammals, while a distinct laminated organization of the intracortical white matter was revealed with parvalbumin immunostaining. The cerebral cortex of the tree pangolin presented with indistinct laminar boundaries as well as pyramidalization of the neurons in both layers 2 and 4. All cortical regions typically found in mammals were present, with the cortical areas within these regions often corresponding to what has been reported in carnivores. Given the similarity of the organization of the pallial telencephalon of the tree pangolin to that observed in other mammals, especially carnivores, it would be reasonable to assume that the neural processing afforded the tree pangolin by these structures does not differ dramatically to that of other mammals.


Asunto(s)
Pangolines , Telencéfalo , Animales , Encéfalo , Corteza Cerebral , Hipocampo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...