Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519268

RESUMEN

The vertebrate-specific DEP domain-containing mTOR interacting protein (DEPTOR), an oncoprotein or tumor suppressor, has important roles in metabolism, immunity, and cancer. It is the only protein that binds and regulates both complexes of mammalian target of rapamycin (mTOR), a central regulator of cell growth. Biochemical analysis and cryo-EM reconstructions of DEPTOR bound to human mTOR complex 1 (mTORC1) and mTORC2 reveal that both structured regions of DEPTOR, the PDZ domain and the DEP domain tandem (DEPt), are involved in mTOR interaction. The PDZ domain binds tightly with mildly activating effect, but then acts as an anchor for DEPt association that allosterically suppresses mTOR activation. The binding interfaces of the PDZ domain and DEPt also support further regulation by other signaling pathways. A separate, substrate-like mode of interaction for DEPTOR phosphorylation by mTOR complexes rationalizes inhibition of non-stimulated mTOR activity at higher DEPTOR concentrations. The multifaceted interplay between DEPTOR and mTOR provides a basis for understanding the divergent roles of DEPTOR in physiology and opens new routes for targeting the mTOR-DEPTOR interaction in disease.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mariposas Nocturnas , Dominios Proteicos , Serina-Treonina Quinasas TOR/genética
2.
Sci Adv ; 6(45)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33158864

RESUMEN

The protein kinase mammalian target of rapamycin (mTOR) is the central regulator of cell growth. Aberrant mTOR signaling is linked to cancer, diabetes, and neurological disorders. mTOR exerts its functions in two distinct multiprotein complexes, mTORC1 and mTORC2. Here, we report a 3.2-Å resolution cryo-EM reconstruction of mTORC2. It reveals entangled folds of the defining Rictor and the substrate-binding SIN1 subunits, identifies the carboxyl-terminal domain of Rictor as the source of the rapamycin insensitivity of mTORC2, and resolves mechanisms for mTORC2 regulation by complex destabilization. Two previously uncharacterized small-molecule binding sites are visualized, an inositol hexakisphosphate (InsP6) pocket in mTOR and an mTORC2-specific nucleotide binding site in Rictor, which also forms a zinc finger. Structural and biochemical analyses suggest that InsP6 and nucleotide binding do not control mTORC2 activity directly but rather have roles in folding or ternary interactions. These insights provide a firm basis for studying mTORC2 signaling and for developing mTORC2-specific inhibitors.


Asunto(s)
Proteínas Portadoras , Serina-Treonina Quinasas TOR , Proteínas Portadoras/metabolismo , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Nucleótidos/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(2): 1000-1008, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31882446

RESUMEN

Cytosolic hybrid histidine kinases (HHKs) constitute major signaling nodes that control various biological processes, but their input signals and how these are processed are largely unknown. In Caulobacter crescentus, the HHK ShkA is essential for accurate timing of the G1-S cell cycle transition and is regulated by the corresponding increase in the level of the second messenger c-di-GMP. Here, we use a combination of X-ray crystallography, NMR spectroscopy, functional analyses, and kinetic modeling to reveal the regulatory mechanism of ShkA. In the absence of c-di-GMP, ShkA predominantly adopts a compact domain arrangement that is catalytically inactive. C-di-GMP binds to the dedicated pseudoreceiver domain Rec1, thereby liberating the canonical Rec2 domain from its central position where it obstructs the large-scale motions required for catalysis. Thus, c-di-GMP cannot only stabilize domain interactions, but also engage in domain dissociation to allosterically invoke a downstream effect. Enzyme kinetics data are consistent with conformational selection of the ensemble of active domain constellations by the ligand and show that autophosphorylation is a reversible process.


Asunto(s)
Caulobacter crescentus/metabolismo , GMP Cíclico/análogos & derivados , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/genética , Ciclo Celular/fisiología , Cristalografía por Rayos X , GMP Cíclico/química , GMP Cíclico/metabolismo , Histidina Quinasa/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Sistemas de Mensajero Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...