Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
bioRxiv ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39282356

RESUMEN

We deployed the Blended Genome Exome (BGE), a DNA library blending approach that generates low pass whole genome (1-4× mean depth) and deep whole exome (30-40× mean depth) data in a single sequencing run. This technology is cost-effective, empowers most genomic discoveries possible with deep whole genome sequencing, and provides an unbiased method to capture the diversity of common SNP variation across the globe. To evaluate this new technology at scale, we applied BGE to sequence >53,000 samples from the Populations Underrepresented in Mental Illness Associations Studies (PUMAS) Project, which included participants across African, African American, and Latin American populations. We evaluated the accuracy of BGE imputed genotypes against raw genotype calls from the Illumina Global Screening Array. All PUMAS cohorts had R 2 concordance ≥95% among SNPs with MAF≥1%, and never fell below ≥90% R 2 for SNPs with MAF<1%. Furthermore, concordance rates among local ancestries within two recently admixed cohorts were consistent among SNPs with MAF≥1%, with only minor deviations in SNPs with MAF<1%. We also benchmarked the discovery capacity of BGE to access protein-coding copy number variants (CNVs) against deep whole genome data, finding that deletions and duplications spanning at least 3 exons had a positive predicted value of ~90%. Our results demonstrate BGE scalability and efficacy in capturing SNPs, indels, and CNVs in the human genome at 28% of the cost of deep whole-genome sequencing. BGE is poised to enhance access to genomic testing and empower genomic discoveries, particularly in underrepresented populations.

2.
Genome Biol ; 25(1): 213, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123217

RESUMEN

In biomedical research, validating a scientific discovery hinges on the reproducibility of its experimental results. However, in genomics, the definition and implementation of reproducibility remain imprecise. We argue that genomic reproducibility, defined as the ability of bioinformatics tools to maintain consistent results across technical replicates, is essential for advancing scientific knowledge and medical applications. Initially, we examine different interpretations of reproducibility in genomics to clarify terms. Subsequently, we discuss the impact of bioinformatics tools on genomic reproducibility and explore methods for evaluating these tools regarding their effectiveness in ensuring genomic reproducibility. Finally, we recommend best practices to improve genomic reproducibility.


Asunto(s)
Biología Computacional , Genómica , Genómica/métodos , Biología Computacional/métodos , Reproducibilidad de los Resultados , Humanos
3.
Cell ; 187(17): 4449-4457, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178828

RESUMEN

Computational data-centric research techniques play a prevalent and multi-disciplinary role in life science research. In the past, scientists in wet labs generated the data, and computational researchers focused on creating tools for the analysis of those data. Computational researchers are now becoming more independent and taking leadership roles within biomedical projects, leveraging the increased availability of public data. We are now able to generate vast amounts of data, and the challenge has shifted from data generation to data analysis. Here we discuss the pitfalls, challenges, and opportunities facing the field of data-centric research in biology. We discuss the evolving perception of computational data-driven research and its rise as an independent domain in biomedical research while also addressing the significant collaborative opportunities that arise from integrating computational research with experimental and translational biology. Additionally, we discuss the future of data-centric research and its applications across various areas of the biomedical field.


Asunto(s)
Investigación Biomédica , Biología Computacional , Biología Computacional/métodos , Humanos
4.
PeerJ Comput Sci ; 10: e2066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983240

RESUMEN

Data-driven computational analysis is becoming increasingly important in biomedical research, as the amount of data being generated continues to grow. However, the lack of practices of sharing research outputs, such as data, source code and methods, affects transparency and reproducibility of studies, which are critical to the advancement of science. Many published studies are not reproducible due to insufficient documentation, code, and data being shared. We conducted a comprehensive analysis of 453 manuscripts published between 2016-2021 and found that 50.1% of them fail to share the analytical code. Even among those that did disclose their code, a vast majority failed to offer additional research outputs, such as data. Furthermore, only one in ten articles organized their code in a structured and reproducible manner. We discovered a significant association between the presence of code availability statements and increased code availability. Additionally, a greater proportion of studies conducting secondary analyses were inclined to share their code compared to those conducting primary analyses. In light of our findings, we propose raising awareness of code sharing practices and taking immediate steps to enhance code availability to improve reproducibility in biomedical research. By increasing transparency and reproducibility, we can promote scientific rigor, encourage collaboration, and accelerate scientific discoveries. We must prioritize open science practices, including sharing code, data, and other research products, to ensure that biomedical research can be replicated and built upon by others in the scientific community.

5.
Int Immunopharmacol ; 138: 112376, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38917523

RESUMEN

The capacity of T cells to initiate anti-leukemia immune responses is determined by the ability of their receptors (TCRs) to recognize leukemia neoantigens. Epigenetic mechanisms including DNA methylation contribute to shaping the TCR repertoire composition and diversity. The DNA hypomethylating agents (HMAs) have been widely used in the treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Whether DNA HMAs directly influence TCR gene loci methylation patterns remains unknown. By analyzing public datasets, we compared methylation patterns across TCR loci in AML patients and healthy controls. We also explored how HMAs influence TCR loci DNA methylation in patients with AML. While methylation patterns are largely conserved across the TCR loci, certain V genes exhibit high interindividual variability. Although overall methylation levels within the TCR loci did not show significant differences, specific sites, including 32 TRAV and 12 TRBV sites exhibited distinct methylation patterns when comparing T cells from healthy donors to those from patients with AML. In leukemic cells, decitabine treatment demethylates sites across the TRAV and TRBV genes. While not as significant, a similar pattern of demethylation is observed in T cells. Pretreatment AML samples exhibit higher methylation beta values in differentially methylated positions (DMPs) compared with non-DMPs. Methylation levels of certain TRAV and TRBV genes in leukemic cells are associated with patients' risk status. The presence of disease specific TCR loci methylated signatures that are associated with clinical outcome presents an opportunity for therapeutic intervention. HMAs can modulate the TCR loci methylation patterns, yet whether they could reprogram the TCR repertoire composition remains to be explored.


Asunto(s)
Metilación de ADN , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/inmunología , Decitabina/farmacología , Decitabina/uso terapéutico , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Epigénesis Genética , Antimetabolitos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/farmacología
6.
J Comput Biol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934087

RESUMEN

Evaluating changes in metabolic pathway activity is essential for studying disease mechanisms and developing new treatments, with significant benefits extending to human health. Here, we propose EMPathways2, a maximum likelihood pipeline that is based on the expectation-maximization algorithm, which is capable of evaluating enzyme expression and metabolic pathway activity level. We first estimate enzyme expression from RNA-seq data that is used for simultaneous estimation of pathway activity levels using enzyme participation levels in each pathway. We implement the novel pipeline to RNA-seq data from several groups of mice, which provides a deeper look at the biochemical changes occurring as a result of bacterial infection, disease, and immune response. Our results show that estimated enzyme expression, pathway activity levels, and enzyme participation levels in each pathway are robust and stable across all samples. Estimated activity levels of a significant number of metabolic pathways strongly correlate with the infected and uninfected status of the respective rodent types.

7.
Nat Commun ; 15(1): 2838, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565543

RESUMEN

The emergence of viral variants with altered phenotypes is a public health challenge underscoring the need for advanced evolutionary forecasting methods. Given extensive epistatic interactions within viral genomes and known viral evolutionary history, efficient genomic surveillance necessitates early detection of emerging viral haplotypes rather than commonly targeted single mutations. Haplotype inference, however, is a significantly more challenging problem precluding the use of traditional approaches. Here, using SARS-CoV-2 evolutionary dynamics as a case study, we show that emerging haplotypes with altered transmissibility can be linked to dense communities in coordinated substitution networks, which become discernible significantly earlier than the haplotypes become prevalent. From these insights, we develop a computational framework for inference of viral variants and validate it by successful early detection of known SARS-CoV-2 strains. Our methodology offers greater scalability than phylogenetic lineage tracing and can be applied to any rapidly evolving pathogen with adequate genomic surveillance data.


Asunto(s)
Evolución Biológica , Genoma Viral , Filogenia , Diagnóstico Precoz , Genoma Viral/genética , Genómica , SARS-CoV-2/genética
8.
Nat Protoc ; 19(9): 2529-2539, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38565959

RESUMEN

Methods for analyzing the full complement of a biomolecule type, e.g., proteomics or metabolomics, generate large amounts of complex data. The software tools used to analyze omics data have reshaped the landscape of modern biology and become an essential component of biomedical research. These tools are themselves quite complex and often require the installation of other supporting software, libraries and/or databases. A researcher may also be using multiple different tools that require different versions of the same supporting materials. The increasing dependence of biomedical scientists on these powerful tools creates a need for easier installation and greater usability. Packaging and containerization are different approaches to satisfy this need by delivering omics tools already wrapped in additional software that makes the tools easier to install and use. In this systematic review, we describe and compare the features of prominent packaging and containerization platforms. We outline the challenges, advantages and limitations of each approach and some of the most widely used platforms from the perspectives of users, software developers and system administrators. We also propose principles to make the distribution of omics software more sustainable and robust to increase the reproducibility of biomedical and life science research.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Humanos , Proteómica/métodos
9.
Front Immunol ; 15: 1344086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500880

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has been defined as the greatest global health and socioeconomic crisis of modern times. While most people recover after being infected with the virus, a significant proportion of them continue to experience health issues weeks, months and even years after acute infection with SARS-CoV-2. This persistence of clinical symptoms in infected individuals for at least three months after the onset of the disease or the emergence of new symptoms lasting more than two months, without any other explanation and alternative diagnosis have been named long COVID, long-haul COVID, post-COVID-19 conditions, chronic COVID, or post-acute sequelae of SARS-CoV-2 (PASC). Long COVID has been characterized as a constellation of symptoms and disorders that vary widely in their manifestations. Further, the mechanisms underlying long COVID are not fully understood, which hamper efficient treatment options. This review describes predictors and the most common symptoms related to long COVID's effects on the central and peripheral nervous system and other organs and tissues. Furthermore, the transcriptional markers, molecular signaling pathways and risk factors for long COVID, such as sex, age, pre-existing condition, hospitalization during acute phase of COVID-19, vaccination, and lifestyle are presented. Finally, recommendations for patient rehabilitation and disease management, as well as alternative therapeutical approaches to long COVID sequelae are discussed. Understanding the complexity of this disease, its symptoms across multiple organ systems and overlapping pathologies and its possible mechanisms are paramount in developing diagnostic tools and treatments.


Asunto(s)
COVID-19 , Humanos , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Manejo de la Enfermedad , Progresión de la Enfermedad
10.
Environ Pollut ; 346: 123649, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402936

RESUMEN

Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure and improving wastewater treatment, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, and improving waste recycling. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.


Asunto(s)
Plaguicidas , Plásticos , Humanos , Contaminación Ambiental , Farmacorresistencia Microbiana/genética , Bacterias , Metales , Antibacterianos/farmacología , Genes Bacterianos
11.
Arthritis Res Ther ; 26(1): 47, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336809

RESUMEN

BACKGROUND: Juvenile idiopathic arthritis (JIA) is one of the most prevalent rheumatic disorders in children and is classified as an autoimmune disease (AID). While a robust genetic contribution to JIA etiology has been established, the exact pathogenesis remains unclear. METHODS: To prioritize biologically interpretable susceptibility genes and proteins for JIA, we conducted transcriptome-wide and proteome-wide association studies (TWAS/PWAS). Then, to understand the genetic architecture of JIA, we systematically analyzed single-nucleotide polymorphism (SNP)-based heritability, a signature of natural selection, and polygenicity. Next, we conducted HLA typing using multi-ethnicity RNA sequencing data. Additionally, we examined the T cell receptor (TCR) repertoire at a single-cell level to explore the potential links between immunity and JIA risk. RESULTS: We have identified 19 TWAS genes and two PWAS proteins associated with JIA risks. Furthermore, we observe that the heritability and cell type enrichment analysis of JIA are enriched in T lymphocytes and HLA regions and that JIA shows higher polygenicity compared to other AIDs. In multi-ancestry HLA typing, B*45:01 is more prevalent in African JIA patients than in European JIA patients, whereas DQA1*01:01, DQA1*03:01, and DRB1*04:01 exhibit a higher frequency in European JIA patients. Using single-cell immune repertoire analysis, we identify clonally expanded T cell subpopulations in JIA patients, including CXCL13+BHLHE40+ TH cells which are significantly associated with JIA risks. CONCLUSION: Our findings shed new light on the pathogenesis of JIA and provide a strong foundation for future mechanistic studies aimed at uncovering the molecular drivers of JIA.


Asunto(s)
Artritis Juvenil , Niño , Humanos , Artritis Juvenil/genética , Predisposición Genética a la Enfermedad/genética , Proteínas/genética , Alelos
12.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293199

RESUMEN

Accurate identification of human leukocyte antigen (HLA) alleles is essential for various clinical and research applications, such as transplant matching and drug sensitivities. Recent advances in RNA-seq technology have made it possible to impute HLA types from sequencing data, spurring the development of a large number of computational HLA typing tools. However, the relative performance of these tools is unknown, limiting the ability for clinical and biomedical research to make informed choices regarding which tools to use. Here we report the study design of a comprehensive benchmarking of the performance of 12 HLA callers across 682 RNA-seq samples from 8 datasets with molecularly defined gold standard at 5 loci, HLA-A, -B, -C, -DRB1, and -DQB1. For each HLA typing tool, we will comprehensively assess their accuracy, compare default with optimized parameters, and examine for discrepancies in accuracy at the allele and loci levels. We will also evaluate the computational expense of each HLA caller measured in terms of CPU time and RAM. We also plan to evaluate the influence of read length over the HLA region on accuracy for each tool. Most notably, we will examine the performance of HLA callers across European and African groups, to determine discrepancies in accuracy associated with ancestry. We hypothesize that RNA-Seq HLA callers are capable of returning high-quality results, but the tools that offer a good balance between accuracy and computational expensiveness for all ancestry groups are yet to be developed. We believe that our study will provide clinicians and researchers with clear guidance to inform their selection of an appropriate HLA caller.

13.
Crit Care ; 27(1): 486, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066613

RESUMEN

BACKGROUND: Sepsis is a highly heterogeneous syndrome, which has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. METHODS: The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. RESULTS: Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells and less diverse T cell receptor repertoires. CONCLUSIONS: Two subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences. Trial Registration This is a secondary analysis of data generated as part of the observational CAF-PINT ancillary of the HALF-PINT study (NCT01565941). Registered March 29, 2012.


Asunto(s)
Sepsis , Choque Séptico , Niño , Humanos , Perfilación de la Expresión Génica , Estudios Prospectivos , Sepsis/genética , Choque Séptico/terapia , Transcriptoma , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Observacionales como Asunto
14.
Cancers (Basel) ; 15(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38136414

RESUMEN

Fasting mimicking diets (FMDs) are effective in the treatment of many solid tumors in mouse models, but their effect on hematologic malignancies is poorly understood, particularly in combination with standard therapies. Here we show that cycles of a 3-day FMD given to high-fat-diet-fed mice once a week increased the efficacy of vincristine to improve survival from BCR-ABL B acute lymphoblastic leukemia (ALL). In mice fed a standard diet, FMD cycles in combination with vincristine promoted cancer-free survival. RNA seq and protein assays revealed a vincristine-dependent decrease in the expression of multiple autophagy markers, which was exacerbated by the fasting/FMD conditions. The autophagy inhibitor chloroquine could substitute for fasting/FMD to promote cancer-free survival in combination with vincristine. In vitro, targeted inhibition of autophagy genes ULK1 and ATG9a strongly potentiated vincristine's toxicity. Moreover, anti-CD8 antibodies reversed the effects of vincristine plus fasting/FMD in promoting leukemia-free survival in mice, indicating a central role of the immune system in this response. Thus, the inhibition of autophagy and enhancement of immune responses appear to be mediators of the fasting/FMD-dependent cancer-free survival in ALL mice.

16.
Diagnostics (Basel) ; 13(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37761360

RESUMEN

PURPOSE: Next-generation sequencing (NGS) technology detects specific mutations that can provide treatment opportunities for colorectal cancer (CRC) patients. PATIENTS AND METHODS: We analyzed the mutation frequencies of common actionable genes and their association with clinicopathological characteristics and oncologic outcomes using targeted NGS in 107 Saudi Arabian patients without a family history of CRC. RESULTS: Approximately 98% of patients had genetic alterations. Frequent mutations were observed in BRCA2 (79%), CHEK1 (78%), ATM (76%), PMS2 (76%), ATR (74%), and MYCL (73%). The APC gene was not included in the panel. Statistical analysis using the Cox proportional hazards model revealed an unusual positive association between poorly differentiated tumors and survival rates (p = 0.025). Although no significant univariate associations between specific mutations or overall mutation rate and overall survival were found, our preliminary analysis of the molecular markers for CRC in a predominantly Arab population can provide insights into the molecular pathways that play a significant role in the underlying disease progression. CONCLUSIONS: These results may help optimize personalized therapy when drugs specific to a patient's mutation profile have already been developed.

17.
Res Sq ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693502

RESUMEN

Background: Sepsis is a highly heterogeneous syndrome, that has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. Methods: The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA-sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. Results: Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells, and less diverse T-Cell receptor repertoires. Conclusions: Two subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences. Trial Registration: This is a secondary analysis of data generated as part of the observational CAF PINT ancillary of the HALF PINT study (NCT01565941). Registered 29 March 2012.

18.
bioRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37609176

RESUMEN

Data-driven computational analysis is becoming increasingly important in biomedical research, as the amount of data being generated continues to grow. However, the lack of practices of sharing research outputs, such as data, source code and methods, affects transparency and reproducibility of studies, which are critical to the advancement of science. Many published studies are not reproducible due to insufficient documentation, code, and data being shared. We conducted a comprehensive analysis of 453 manuscripts published between 2016-2021 and found that 50.1% of them fail to share the analytical code. Even among those that did disclose their code, a vast majority failed to offer additional research outputs, such as data. Furthermore, only one in ten papers organized their code in a structured and reproducible manner. We discovered a significant association between the presence of code availability statements and increased code availability (p=2.71×10-9). Additionally, a greater proportion of studies conducting secondary analyses were inclined to share their code compared to those conducting primary analyses (p=1.15*10-07). In light of our findings, we propose raising awareness of code sharing practices and taking immediate steps to enhance code availability to improve reproducibility in biomedical research. By increasing transparency and reproducibility, we can promote scientific rigor, encourage collaboration, and accelerate scientific discoveries. We must prioritize open science practices, including sharing code, data, and other research products, to ensure that biomedical research can be replicated and built upon by others in the scientific community.

19.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37291798

RESUMEN

The ability to identify and track T-cell receptor (TCR) sequences from patient samples is becoming central to the field of cancer research and immunotherapy. Tracking genetically engineered T cells expressing TCRs that target specific tumor antigens is important to determine the persistence of these cells and quantify tumor responses. The available high-throughput method to profile TCR repertoires is generally referred to as TCR sequencing (TCR-Seq). However, the available TCR-Seq data are limited compared with RNA sequencing (RNA-Seq). In this paper, we have benchmarked the ability of RNA-Seq-based methods to profile TCR repertoires by examining 19 bulk RNA-Seq samples across 4 cancer cohorts including both T-cell-rich and T-cell-poor tissue types. We have performed a comprehensive evaluation of the existing RNA-Seq-based repertoire profiling methods using targeted TCR-Seq as the gold standard. We also highlighted scenarios under which the RNA-Seq approach is suitable and can provide comparable accuracy to the TCR-Seq approach. Our results show that RNA-Seq-based methods are able to effectively capture the clonotypes and estimate the diversity of TCR repertoires, as well as provide relative frequencies of clonotypes in T-cell-rich tissues and low-diversity repertoires. However, RNA-Seq-based TCR profiling methods have limited power in T-cell-poor tissues, especially in highly diverse repertoires of T-cell-poor tissues. The results of our benchmarking provide an additional appealing argument to incorporate RNA-Seq into the immune repertoire screening of cancer patients as it offers broader knowledge into the transcriptomic changes that exceed the limited information provided by TCR-Seq.


Asunto(s)
Benchmarking , Neoplasias , Humanos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Neoplasias/genética , Análisis de Secuencia de ARN
20.
Genome Biol ; 24(1): 119, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198712

RESUMEN

Computational methods represent the lifeblood of modern molecular biology. Benchmarking is important for all methods, but with a focus here on computational methods, benchmarking is critical to dissect important steps of analysis pipelines, formally assess performance across common situations as well as edge cases, and ultimately guide users on what tools to use. Benchmarking can also be important for community building and advancing methods in a principled way. We conducted a meta-analysis of recent single-cell benchmarks to summarize the scope, extensibility, and neutrality, as well as technical features and whether best practices in open data and reproducible research were followed. The results highlight that while benchmarks often make code available and are in principle reproducible, they remain difficult to extend, for example, as new methods and new ways to assess methods emerge. In addition, embracing containerization and workflow systems would enhance reusability of intermediate benchmarking results, thus also driving wider adoption.


Asunto(s)
Benchmarking , Biología Computacional , Biología Computacional/métodos , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...