Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36899761

RESUMEN

An in-depth characterisation of protein and lipid fractions and changes in the physicochemical and meat-quality attributes of camel meat, beef and mutton over 9 days of refrigerated storage was investigated. The lipids of all the meat samples, especially those in camel meat, underwent significant oxidation in the first 3 days of storage. A decrease in pigment and redness (a* value) with an increase in the storage time was noticed in all the meat samples, suggesting the oxidation of the haem protein. The mutton samples displayed greater protein extractability, while the protein solubility values in all the meat samples were similar, and these varied as storage progressed. The drip loss percentage in camel meat and mutton were two times higher than in beef, and it increased during storage period. The textural properties of fresh camel meat were higher than mutton and beef, and these decreased during day 3 and 9, respectively, indicating the proteolysis and the degradation of the structural proteins, which were also evident from the SDS-PAGE pattern.

2.
J Food Sci Technol ; 55(9): 3427-3438, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30150801

RESUMEN

Inside round muscles (Adductor) from camels treated with bromelain or ficin or papain at 50 or 100 ppm were subsequently stored at 4 °C for 4 days to study the impact on quality attributes, protein degradation and textural changes. Results revealed that papain (100 ppm) treated camel meat showed higher drip loss and lower water holding capacity compared to other treatments. Total protein, sarcoplasmic protein solubility, trichloroacetic acid (TCA)-soluble peptides and soluble collagen were higher in papain and bromelain treated samples at 100 ppm compared to other treatments. Electrophoretic profile of whole camel meat, isolated sarcoplasmic and myofibrillar proteins depicted a noticeable degradation of various proteins in enzyme treated samples, with papain and bromelain (100 ppm) displaying pronounced effect. Meat treated with papain at 100 ppm displayed lower hardness and shear force (P < 0.05). Thus, enzymes treatment at 100 ppm displayed good potential to tenderize camel meat with the papain being more effective among all.

3.
Anim Sci J ; 87(11): 1433-1442, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26968389

RESUMEN

Impact of tannic acid (TA), date seed extract (DSE), catechin (CT) and green tea extract (GTE) on lipid oxidation, microbial load and textural properties of camel meat sausages during 12 days of refrigerated storage was investigated. TA and CT showed higher activities in all antioxidative assays compared to DSE and GTE. Lipid oxidation and microbial growth was higher for control sausages when compared to other samples. TA and CT at a level of 200 mg/kg were more effective in retarding lipid oxidation and lowering microbial count (P < 0.05). Sausages treated with TA and DSE were found to have higher hardness, gumminess and chewiness values compared to other treatments (P < 0.05). Addition of different phenolic compounds or extract did not influence the sensory color of sausages. Furthermore, sensory quality was also found to be superior in TA and CT treated sausages. Therefore, pure phenolic compounds (TA and CT) proved to be more effective in retaining microbial and sensorial qualities of camel meat sausages compared to phenolic extracts (GTE and DSE) over 12 days of storage at 4°C.


Asunto(s)
Catequina , Aditivos Alimentarios , Microbiología de Alimentos , Calidad de los Alimentos , Peroxidación de Lípido , Productos de la Carne/análisis , Productos de la Carne/microbiología , Phoeniceae , Extractos Vegetales , Taninos , , Animales , Camelus , Fenómenos Químicos , Almacenamiento de Alimentos/métodos , Refrigeración , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...